
Iterative Methods

The following summarizes the main points of our class discussion of the classical

iterative methods for solving Ax = b and also provides additional useful results.

Conventions: The system dimensions are A ∈ IRn×n and x ∈ IRn, b ∈ IRn. The ijth

entry in A is denoted by aij . The ith components of x and b are denoted by xi and bi.

A sum is omitted when its lower index of summation is greater than its upper index

of summation.

The classical methods.

These methods are based on a “splitting” A = D − L − U , in which D is a diagonal

matrix containing the diagonal of A, and −L and −U are strict lower- and upper-

triangular matrices containing the strict lower- and upper-triangular parts of A. The

“matrix” forms of the methods are as follows:

Jacobi Iteration:

Given an initial x,

Iterate:

x← D−1 [(L+ U)x+ b]

Gauss–Seidel Iteration:

Given an initial x,

Iterate:

x← (D − L)−1
(

Ux+ b
)

Successive Over-Relaxation (SOR):

Given an initial x,

Iterate:

x← (D − ωL)−1 {[(1− ω)D + ωU ]x+ ωb}

The equivalent “componentwise” forms of the methods are as follows

Jacobi Iteration:

Given an initial x,

Iterate:

For i = 1, . . . , n

x+
i =

(

bi −
∑

j 6=i aijxj

)

/aii

Update x← x+.

Gauss–Seidel Iteration:

Given an initial x,

Iterate:

For i = 1, . . . , n

xi ←
(

bi −
∑

j<i aijxj −
∑

j>i aijxj

)

/aii
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Successive Over-Relaxation (SOR):

Given an initial x,

Iterate:

For i = 1, . . . , n

xi ← (1− ω)xi + (ω/aii)
(

bi −
∑

j<i aijxj −
∑

j>i aijxj

)

Convergence theory.

Consider the following General Iteration, in which T ∈ IRn×n and c ∈ IRn:

General Iteration:

Given an initial x,

Iterate:

x← Tx+ c

The classical iterative methods are of this form, as follows:

• Jacobi iteration: T = TJ ≡ D−1(L+ U) and c = cJ ≡ D−1b.

• Gauss–Seidel iteration: T = TGS ≡ (D − L)−1U and c = cGS ≡ (D − L)−1b.

• SOR: T = Tω ≡ (D − ωL)−1 [(1− ω)D + ωU ] and c = cω ≡ ω(D − ωL)−1b.

Note that for all three methods, x∗ = Tx∗ + c if and only if x∗ = A−1b. Thus, if the

iterates produced by one of these methods converge, then they converge to A−1b.

Proposition 1 and Theorem 3 below are results for the General Iteration.

Proposition 1: If {x(k)} produced by the General Iteration converges to some x∗,

then x∗ = Tx∗ + c.

Definition 2: The spectrum and the spectral radius of T are, respectively,

σ(T ) ≡ {λ : Tx = λx, for some x 6= 0} and ρ(T ) ≡ max
λ∈σ(T )

|λ|.

Theorem 3: The iterates {x(k)} produced by the General Iteration converge for every

x(0) if and only if ρ(T ) < 1. If ρ(T ) < 1, then for every x(0), {x(k)} converges to the

unique x∗ satisfying x∗ = Tx∗ + c.

The results below pertain to convergence of the classical iterations and are often useful

in applications.

Definition 4: A is diagonally dominant if |aii| ≥
∑

j 6=i |aij | for 1 ≤ i ≤ n. A is

strictly diagonally dominant if |aii| >
∑

j 6=i |aij | for 1 ≤ i ≤ n.

Theorem 5: If A is strictly diagonally dominant, then A is nonsingular. Moreover,

ρ(TJ) < 1 and ρ(TGS) < 1; consequently, both the Jacobi and Gauss–Seidel iterates

converge to A−1b for every x(0).
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Theorem 6 (Stein–Rosenberg): If aij ≤ 0 for i 6= j and if aii > 0 for each i, then

one and only one of the following holds:

(a) 0 ≤ ρ(TGS) < ρ(TJ) < 1, (b) 1 < ρ(TJ) < ρ(TGS),

(c) ρ(TJ ) = ρ(TGS) = 0, (d) ρ(TJ ) = ρ(TGS) = 1.

Note that if (a) holds, then both the Jacobi and Gauss–Seidel iterates converge to

A−1b for every x(0), and we can expect the Gauss–Seidel iterates to converge faster.

If (c) holds, then the iterates from both methods reach A−1b in a finite number of

iterations. If (b) or (d) holds, then the iterates do not converge for some x(0).

Theorem 7: If A is symmetric positive-definite (SPD), then the Gauss–Seidel iterates

converge to A−1b for every x(0).

Note that, since an SPD matrix has positive diagonal elements, it follows from Theo-

rem 7 and the Stein–Rosenberg theorem that if A is SPD with non-positive off-diagonal

elements, then the Jacobi iterates as well as the Gauss–Seidel iterates converge to A−1b

for every x(0), and we can expect the Gauss–Seidel iterates to converge faster.

Theorem 8 (Kahan): If aii 6= 0 for i = 1, . . . , n, then the SOR iteration matrix Tω

satisfies ρ(Tω) ≥ |ω − 1|. Consequently, the SOR iterates converge for every x(0) only

if 0 < ω < 2.

Theorem 9 (Ostrowski–Reich): If A is symmetric positive-definite and 0 < ω <

2, then the SOR iterates converge to A−1b for every x(0).

Theorem 10: If A is symmetric positive-definite and tridiagonal, then ρ(TGS) =

ρ(TJ)
2 < 1, and the ω that minimizes ρ(Tω) is

ω =
2

1 +
√

1− ρ(TJ)2
.

For this ω, ρ(Tω) = ω − 1.

The results above came from reference [1, Sec. 7.3], although Theorem 5 has been

augmented a bit and Theorem 7 is not stated there, presumably because it is implied

by Theorem 9 with ω = 1. There are many more convergence results for the classical

iterations. A good general reference is [2]. Seminal classical references are [3] and [4].
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