
On Differential Forms

Abstract. This article will give a very simple definition of k-forms or differential forms. It just requires
basic knowledge about matrices and determinants. Furthermore a very simple proof will be given for the
proposition that the double outer differentiation of k-forms vanishes.
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1. Basic definitions.

We denote the submatrix of A = (aij) ∈ Rm×n consisting of the rows i1, . . . , ik and the columns j1, . . . , jk
with

[A]j1
i1

...

...
jk
ik

:=







ai1j1 . . . ai1jk
...

. . .
...

aikj1 . . . aikjk







and its determinant with

Aj1
i1

...

...
jk
ik

:= det[A]j1
i1

...

...
jk
ik
.

For example

A =

(

a11 a12 a13
a21 a22 a23

)

, A
1,3
1,2 = a11a23 − a21a13.

Suppose

H ∈ Rn×(n+1)

and let

f, g:U ⊆ Rn → R, U open

be two functions which are two-times continuously differentiable. Then we call for a fixed k the expression

f H1...k
α , α = (i1, . . . , ik) ∈ {1, . . . , n}

k
,

a basic k-form or basic differential form of order k. It’s a real function of n + k2 variables. For k > n the
expression is defined to be zero. If f also depends on α then

∑

1≤i1<···<ik≤n

fi1...ikH
1
i1

...

...
k
ik

is called a k-form. It’s a real function of n+ kn variables which is k-linear in the k column-vectors of H.

For example for f :R → R and H ∈ R1×1 we have f(x)H. This is a linear function in H and a possibly
non-linear function in x.
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2. Differentiation of k-forms.

For the differential form
ω = fH1...k

α , α = (i1, . . . , ik) ,

we define

dω :=

n
∑

ν=1

∂f

∂xν

H1...k+1
ν,α

as the outer differentiation of ω. This is a (k + 1)-form. It’s a function of n+ (k + 1)n variables.
The 0-form

ω = f, |α| = k = 0

yields

dw =

n
∑

ν=1

∂f

∂xν

H1
ν (1)

which corresponds to ∇f = grad f .
In the special case k = |α| = 1 we get for

ω =

n
∑

i=1

fiH
1
i

the result

dω =

n
∑

i=1

n
∑

j=1

∂fi

∂xj

H
1,2
j,i =

∑

i<j

(

∂fi

∂xj

−
∂fj

∂xi

)

H
1,2
j,i . (2)

This corresponds to rot f .
Let hat (̂) mean exclusion from the index list. The case k = n− 1 for

ω =
n
∑

i=1

(−1)i−1fi H
1...n−1
1...̂ı...n

delivers

dw =
n
∑

i=1

n
∑

ν=1

(−1)i−1 ∂fi

∂xν

H 1...n
ν,1...̂ı...n =

n
∑

i=1

∂fi

∂xν

H1...n
1...n =

(

n
∑

i=1

∂fi

∂xi

)

detH.

This corresponds to div f .

Theorem. For ω = fH1...k
α we have

ddω = 0.

Proof: With

dω =

n
∑

ν=1

∂f

∂xν

H1...k+1
ν,α

we get

ddω =

n
∑

ν=1

n
∑

µ=1

∂2f

∂xν∂xµ

H1...k+2
µ,ν,α

and this is zero, because
H1...k+2

µ,µ,α = 0, H1...k+2
µ,ν,α = −H1...k+2

ν,µ,α ,

and
∂2f

∂xν∂xµ

=
∂2f

∂xµ∂xν

.
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Application of this theorem to an 0-form with an f :U ⊆ Rn → R and a 1-form with an a:U → Rn

reading (1) and then (2) yields

rot grad f = 0, div rot a = 0.

The second equation is only true for n = 3 because

(

n

2

)

= n (n ∈ N) ⇔ n = 3.

Definition. Suppose

φ:D → E ⊂ Rn, D ⊂⊂ Rk,

is differentiable, its derivative denoted by φ′, and

f :E → R.

For the differential form ω = fH1...k
α we define the back-transportation as

φ∗ω := (f ◦ φ) (φ′)1...kα

and the integral over k-forms as
∫

φ

ω :=

∫

D

φ∗ω.

For example the case k = 1,

ω =

n
∑

i=1

fiH
1
i

gives

φ∗ω =

n
∑

i=1

(fi ◦ φ) (φ
′)1i .
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3. The outer product of differential forms.

Suppose

H ∈ Rn×(n+1), k +m ≤ n.

For the two differential forms

ω =
∑

1≤i1<···<ik≤n

fi1...ikH
1
i1

...

...
k
ik

and

λ =
∑

1≤j1<···<jm≤n

gj1...jmHk+1
j1

...

...
k+m
jm

the outer product is defined as

w ∧ λ :=
∑

1≤i1<···<ik≤n
1≤j1<···<jm≤n

fi1...ikgj1...jmH 1
i1

...

...
k
ik

k+1
j1

...

...
k+m
jm

.

This is a differential form of order k +m. It’s a function in n+ (k +m)n variables.

Theorem.

d(ω ∧ λ) = dω ∧ λ+ (−1)kω ∧ dλ

Proof: With

ω =
∑

α

fαH
1...k
α , λ =

∑

β

gβH
1...m
β

then

d(ω ∧ λ) =
∑

α,β

n
∑

ν=1

(

∂fα

∂xν

gβ + fβ
∂gβ

∂xν

)

H1...k+m+1
ν,α,β

=
∑

α,β

n
∑

ν=1

∂fα

∂xν

gβH
1...k+m+1
ν,α,β +

∑

α,β

n
∑

ν=1

fα
∂gβ

∂xν

H1...k+m+1
ν,α,β

= dω ∧ λ+ (−1)kω ∧ dλ,

due to

H1...k+m+1
ν,α,β = (−1)kH1...k+m+1

ν,β,α

and

dλ =
∑

β

n
∑

ν=1

∂gβ

∂xν

H1...m+1
ν,β .

An alternative definition for the differentiation of k-forms could be given.

Theorem. Suppose

ω = fH1...k
α , 0 ≤ |α| ≤ k,

and

H = (h1, . . . , hn, hn+1) ∈ Rn×(n+1)

with α = (i1, . . . , ik) we have

dω = det
(

col
(

∇f, [Idn]
1...n
α

)

[H]1...k+1
1...n

)

=
n
∑

ν=1

∂f

∂xν

H1...k+1
ν,α ,

– 4 –



where col just stacks matrices one above another and Idn is the identity matrix in Rn.

Proof:

dω =

∣

∣

∣

∣

∣

∣

∣

∣

〈∇f, h1〉 . . . 〈∇f, hk〉 〈∇f, hk+1〉
〈ei1 , h1〉 . . . 〈ei1 , hk〉 〈ei1 , hk+1〉

...
. . .

...
...

〈eik , h1〉 . . . 〈eik , hk〉 〈eik , hk+1〉

∣

∣

∣

∣

∣

∣

∣

∣

=
n
∑

ν=1

∂f

∂xν

∣

∣

∣

∣

∣

∣

∣

∣

h1,ν h1,i1 . . . h1,ik
...

...
. . .

...
hk,ν hk,i1 . . . hk,ik

hk+1,ν hk+1,i1 . . . hk+1,ik

∣

∣

∣

∣

∣

∣

∣

∣

since

〈∇f, h1〉 =

n
∑

ν=1

∂f

∂xν

h1,ν ,

...
...

〈∇f, hk+1〉 =

n
∑

ν=1

∂f

∂xν

hk+1,ν .
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