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1. Introduction. The Young-Frankel [11, 5] successive overrelaxa-
tion scheme, which has been shown [11, pp. 104-109] to be applicable
to the numerical solution of partial equations of elliptic type, can be
described as follows. If the system of linear equations to be solved is

(1) Mz =

-

=~

’

where the n xn matrix M = (m, ;) is such that m,,#0 for 1=1,2, ---, m,
then the iterative sequence, defined by the successive overrelaxation
scheme, is given by

i=1 n
(2) x;lﬂ) — w{z bi,jx(jlﬂ) _}_jzi bi,jxsb A+ Ci}’ 4 (1 _ CU)Q’/'{(/)
Jj=1 =1+1

where z{” is arbitrary, 1 =1,2,.--,n, and where

— My, 5[ My, ]
(3) b = e
0, 1 :j
and
(4) ¢ = kifmy, 1=1,2,+e4,m .

With certain assumptions, Young [11] has shown that, for suitable choice
of the relazation factor w, relatively rapid convergence of the iterative
process (2) is assured. These hypotheses are satisfied by the usual five-
point difference approximation to — v - (kvu)=S, k >0, in the plane
[11,9].

We show that successive overrelaxation can be considered as a
special case of a more general iterative scheme applicable to the wider
class of p-cyclic matrices, to be defined below. Indeed, ordinary succes-
sive (point) overrelaxation, as well its generalization [1] to successive
block (line) overrelaxation, is just the special case p = 2 of the iterative
scheme we shall now define.

2. p-cyclic matrices. We begin with the following

This paper was originally accepted by the Trans. Amer. Math. Soc. Presented to the
American Mathematical Society, August 30, 1957, under the title ‘‘The p-color problem:
a gemeralization of the Young-Frankel successive overrelaxation scheme.” Received by
the editors of the Trans. Math. Soc. January 24, 1958.
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618 RICHARD S. VARGA

DEFINITION 1. The # x n matrix A = (a;,;) is cyclic of index p
(p = 2) if and only if, after some permutation of rows and columns of
A, the matrix A assumes the cyclic block form

00 - 0 L

L,o .-« 0 0
0 Ly.-- 0 O

(5)

0 0 --- L,0

where the zero diagonal submatrices are square.

This terminology was introduced by Romanovsky [8]. For A cyclic
of index p, Romanovsky [8, pp. 162-166] proved that the characteristic
polynomial p,(\) = |\ — A| of A is of the form

[
(6) PA(\) = VILO — o),

where v + /p =n. (See Theorem 3.)

The following generalizations of the results of [11, 1] are easily
established, and so we state them without proof.! The results will be
stated only for generalizations of Young’s (point) property (A); the ex-
tension to generalizations of block (line) property (A7) is easily carried
out.

DEeFINITION 2. The n x » matrix M = (m, ;) is p-cyclic, p = 2, if
and only if the diagonal entries of M are all non-zero, and there exists
p disjoint non-empty subsets S, =0,1,---,p —1, of W, the set of
the first » positive integers, such that U/5'S;= W, and if m,, + 0,
then either 7 = j, or if 7€ .S, then je Si-1, subscripts taken mod p.

THEOREM 1. The n x n matrix M = (m, ;) ts p-cyclic if and only
if there exists a vector ¥ = (v, -+, v,) with integral components such
that iof m,;+ 0, © + 7, then v;, — v, = =1, or v, — v, =p — 1, and for
each integer 0 </ < p—1, there exists some v, such that v, = /(mod p).

Any vector 7 with the properties above is called an ordering vector
for the matrix M.

1 Proofs and other details are given in Report WAPD-T-567 of the Bettis Plant of the
Westinghouse Electric Corporation.

? For the case p = 2, this reduces to Young’s (point) property (4). Young, however,
does not assume that the sets Sy and S; are non-empty. This distinction is trivial, since
if Sy, say, is empty, then M is a diagonal matrix, and if all mg # 0, then the matrix B
of (3) is the null matrix.
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DEFINITION 8. The n x n p-cyelic matrix M is consistently ordered
(relative to the ordering vector ¥) if and only if the following hold, If
m;; + 0, © + j, then:

1. If j>7, then v, — v, =p — 1.

2, If <4, then v; — v, = —1,

REMARK. If M is p-eyclic, then by the same permutation of its
rows and columns, M can be consistently ordered.

THEOREM 2. Let the n x n p-cyclic matrix M be consistently
ordered. If M' = (mi;), and M" = (m}';) are defined by

, mi,j; % é .7 ' mi,jy ,L = Jl‘
(1) mi,;= g M= N
Ay g, 1> ] AN@-DIPgy, e g}

then for all \, det (M’') = det (M").

The relationship between Definitions 1 and 2 is now brought out
through the following

THEOREM 3. The n x n matriz M is p-cyclic if and only if the
matric B of (3) is cyclic of index p. Thus, if M is p-cyclic, then the
characteristic polynomial p,(\) = |\ — B} of B 1is of the form

!
(8) POV = NILOY — 1) ,
where v+ /p =n, and ; + 0.

From this theorem we see that if M is p-cyelic then its non-diago-
nal entries define a matrix which is eyeclic of index p. The second part
of Theorem 38 follows from Romanovsky’s result (6), and gives a new
proof, for the case p = 2, of Young’s lemma’® [11, p. 98] which asserts
that, for » = 2, the non-zero eigenvalues of the matrix B, of (3), occur in
-+ pairs.

Returning to equation (2), it may be written in the form

(9) 0 = I, 30 4+ }Z ,

where ;” is a fixed vector and L, , is a linear operator, where ¢ denotes
the dependence of the equations (2) on the ordering ¢ of the rows and
columns of M.

We can now determine a relationship between the eigenvalues of
the matrix B of (3) and the eigenvalues of the matrix L, of (9).

THEOREM 4. Let the matrix M be p-cyclic, and let ¢ denote a
3 This result has been presented elsewhere. See [2, pp. 368-369].
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consistent ordering. If w +# 0, and if N is a mon-zero eigenvalue of
L,., and if tt satisfies

(10) N+ o — 1) = Aty |

then p is an eigenvalue of B. If p is an eigenvalue of B, and )
satisfies the equation above, then \ is an eigenvalue of L,.,.

We define the spectral radius* of a matrix C, p(C), as the maxi-
mum of the moduli of its eigenvalues. If 1(C) < 1, then C is said to
be convergent, and

(11) R(C) = —/n(E(C))

is defined as the rate of convergence of C.

The iterative method of simultaneous displacements [11, p. 100] is
defined in general by the vector equation

(12) 5’,([+1) — B:_é(b +é,

where the matrix B is defined in (3). The particular choice of w =1
in (2), defining the operator L,,, is called the Gauss-Seidel method.
Theorem 4 leads immediately to the following generalization of Young’s
Corollary 2.1 [11, p. 100].

COROLLARY 1. Let M to be a consistently ordered p-cyclic matrix.
If p is an eigenvalue of B, then p* is an eigenvalue of L., tf N 18
a mon-zero eigenvalue of L,., and if p* =\, then p s an eigenvalue
of B. The method of simultaneous displacements converges if and
only if the Gauss-Seidel method converges, and if both converge, the
latter converges exactly p times as fast,

3. Determination of the optimum relaxation factor. With the
n x n matrix M = (m, ;) of (1) a consistently ordered p-cyclic matrix,
whose associated matrix B of (3) is convergent (& = g(B) < 1), we shall
determine the optimum overrelaxation factor w,, producing fastest con-
vergence in (2), assuming in particular that the eigenvalues of B” are
real and non-negative.® (See Corollary 2.) More precisely, @, is the
unique positive real root (less than p/(p — 1)) of the equation

¢ This is called the spectral norm of C by Young [11, p. 94] although it is not a
norm in the usual sense. When the matrix B of (3) has non-negative entries, u(B) is
called the Jacobi comstant for the matric M of (1) by Ostrowski, Comm. Math. Helv.
(1956), 175-210.

5 Similarly, in the case p =2 of Young, Young [11, p. 102] assumes M to be sym-
metric and positive definite in finding a formula for w,. This implies that the eigenvalues
of B2 are real and non-negative.
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(13) ol = p(p — 1) *(w, — 1) .

Note that if p = 2, this reduces to Young’s equation [11, p. 95] ffw} =
4w, —1). We shall also assume that gz > 0, since the case g =0 is
trivial,

From (10), with ¢ =g and N =2", we obtain, after taking pth
roots, the polynomial equation 2* — wpz** + (w — 1) = 0. We therefore
define the polynomial ¢,(z; ®) as

(14) 9,z @) = 2° — op*t + (0 — 1) .

LEMMA 1. If w, and g,(z; o) are defined respectively by (13) and
(14), then:

1. For 1 < w < w, 9,(2;, w) has precisely two positive real zeros.

2. For w = o, 9,(; ®) has a unique positive real zero of wmulti-
plictty two.

3. For w, < w < pl(p—1), g,(2; ) has no positive real zeros.

Proof. For w >1, let 2 =¢(w — 1)"7, and we obtain

(15) 9,(z; 0) = (0 — D[E* — ()™ + 1] = (0 — Dh(§; 0) ,

which defines the polynomial %,(¢; ). For w +# 1, we note that &, and
g, have the same zeros. By definition,

(16) w) = a)ﬁ(a) — 1)V,

From Descartes’ rule of signs, ¢,(2; ®) has at most two positive real
zeros. Since

det) - OTR{(p ~ Do — )

’

dw (w—1)
the function e¢(w) is strictly decreasing for 1 < o < ———p—l Now,
p —
_ D
8(0)11) = -——‘————-——(p — ]_)(P—-l)/n .

If &, = (p — 1)V?, then h,(&,; ®,) =0, and it can be readily shown that
(p — 1)¥? is a zero of multiplicity two for h,(; ®,), which proves part
2. Using the monotonicity of ¢(w), we have that h,(¢&; @) <0 for
1 < w < w,, from which we conclude part 1. For all { =0 we have
ho(¢; w,) = 0, and again using the monotonicity of e(w), we have for all
&£ =0, that k(¢ @) > 0 for w, < w < p/(p — 1), which proves part 3.

LEMMA 2. For 1< w < w,, the function ¢,.%; w) has a positive
real zero greater im modulus than [(w, — 1)(p — 1)]V°.
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Proof. For 1 < o < w,, one shows directly that %,(&, @) < 0, where

& = [(wb (—0)11(11 )_ 1) ]/ |

and the conclusion follows from Lemma 1, part 1.

LEMMA 3. For any w <1, the function g,(z; ) has a zero greater
in modulus than [(w, — 1)(p — DJ/2.

Proof. By definition, g,(z;1) = 27"'(z — p). It is trivial to verify
that for 22 <1 we have 2t > [(®, — 1)(p — 1)I'*. For » > 1, it is easily
shown that ¢,(z; @) < 0, and since g,(+ o; ®) = + o, the result follows.

We now consider the case for w = w,. From Lemma 1, the real
polynomial ¢,(z; @) has no positive real zeros for w, < o < p/(p — 1), so
we now consider the continuous image, for all @ > w,, of the double
root in the upper half (complex) z plane .~z =0. This continuous
image z(w), ® > ®,, of the double root in the upper half plane is shown
by a somewhat tedious argument to lie in the annulus’

(17) [(w, — 1)(p — DI'? < |2(w)| < [(@ — D)(p — D],
and we have

LEMMA 4. For w > w,, the function g,(z; ) has a zero z, satisfy-
ing [(w, — 1)(p — D]I'"? < |z| = [(@ — )(p — D]

4. Spectral radius of L,,. We consider, for v = ®,, the following
equation derived from (10):

(18) ((z) = 51;{ =
where again 27 = . If |z] =1, it can
be directly verified from (18) that for
r? = (w, — 1)(p — 1), the exterior of the
circle |z| = 7, is mapped conformally onto
the exterior of the closed curve p(rye®).
We now denote by S,(z) the closed set of
points which is the complement of the open
set of image points z4(2), where [z | > 7.
The case p = 3 is illustrated in the adjacent
figure.

THEOREM 5. If all the eigenvalues of B lie in S,(ff), where

0< <1, and i(w) denotes the spectral radius of the operator L,,,
then

u plane

S5(/)

d

“\\\\\—’/

§ For p > 2, it can be shown that strict inequality throughout is valid in (17).
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1. Mw,) = (0, — 1)(p —1).
2. Mo) > Mm,) = (0, — 1)(p — 1) for all w + w,.

Mw,) < Mw) < (0 — 1)(p — 1) for p > 2.
3. For w > w,, {_ _
Mw,) < Mw) = (w — 1) Jfor p =2,

Proof. With the previous lemmas, the conclusions of Theorem 5
will follow if we show that Mw,) = (@, — 1)(» — 1). Since, by the defi-
nition of S,(¢f), the image of the exterior of |z| = 7, contains no eigenvalue
of B, then \(®,) < (w, — 1)(p — 1). On the other hand, all eigenvalues
t, of B satisfy |p| <y, with equality for some <. By definition,
Y = (w, — 1)(p — 1), and it follows from (18) that p(r,) = z. Since, by
(18), |mz)] < 72 for all |z] < 7, and, by assumption, all eigenvalues of
B lie in S,(z), it follows that the image of the closed exterior of |z|=10
contains at least one eigenvalue of B, so that Mw,) = (w, — 1)(p — 1),
and thus Ma,) = (w, — 1)(p — 1), which completes the proof.

The mapping p(z) of (18) has p-fold symmetry in the sense that if
we let z = re'?, then

(19) ﬂ(,ret(e-;-zrtk/y)) — e“"’““’#(re“’) ,

for k=0,1,--.,p — 1. We now assume that the eigenvalues of B”
are real and non-negative. The closed set S,(z) contains the segment
0 7t=H, as well as, by (19), the segments

T exp < 2mik ), 0
p

IA

T < f, k=1,2,.--, p—1.

The assumption that the eigenvalues of B* are real and non-negative
implies, by Theorem 3, that the eigenvalues of B lie on the p segments
Texp 2mik|p), 0 <t <H, k=0,1,---,p— 1. Thus, all the eigenvalues
of B lie in S,(#), which gives us the following.

COROLLARY 2. If all the eigenvalues of B® are real and non-nega-
tive, and 0 < 1t < 1, then the conclusions of Theorem 5 are valid.

From the proof of Theorem 5, we obtain the following useful result.

COROLLARY 3. If all the eigenvalues of B lie in S,(&t), 0 < &I, < 1,
then L,., is convergent, where w, is the solution of (13) with fi = f,.

Using the definition of (11), we now compare the quantities R(L,..,)
and R(L, ).
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THEOREM 6. If w, satisfies (13), then as t— 1 —, we have

2
»—1

RLa,) ~ (2 ) TR

Proof. Since R(L,..,) = —/n[(w, — 1)(p — 1)], and R(L,,) = —p/n]t,
the result follows upon applying L’Hospital’s rule twice to
R(L,,.,)
LR )1

Combining the results of Theorem 6 and Corollary 1, we have the
following

COROLLARY 4. If R(B) denotes the rate of convergence of the method
of simultaneous displacements, then as 11— 1—, we have

R(Le.) ~ | 2 [ TRBIP

We remark first that, by Theorem 6, generalized successive over-
relaxation (with the optimum overrelaxation factor) always gives an order
of magnitude improvement in the rate of convergence for the Gauss-
Seidel method, even though the coefficient [2p/(p — 1)]'* strictly decreases
with p. On the other hand, from the result of Corollary 4, generalized
successive overrelaxation, while giving an order of magnitude improve-
ment for the rate of convergence of the method of simultaneous dis-
placements, is associated with the coefficient [2p*/(p — 1)]"?, which is
strietly increasing with p.

Finally, we mention three facts, obtained by Young in the case
p = 2, which extend to the general case. First, overestimating or un-
derestimating 7, respectively, results in an overestimate or an under-
estimate of w,. Second, overestimating zz by a small amount does not
cause an appreciable decrease in R(L,..,), but, on the other hand, under-
estimating f causes a larger relative decrease in R(mb)' Finally, if the
Jordan normal form of B? is diagonal, then’

(20) sup MU e, — 1 — 1)1, m—> oo
s 1ol

In other words, for any p = 2, the largest degree of the elementary
divisors [10, Chap. III] of L,,, is two.

7 The quantity || v || is the norm of the vector v. If the component of v are v, =1,
2, ++e, m, then [|v]|=[X] lmil]2,
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5. Applications. As a first application, we limit ourselves to plane
connected domains 2, with boundary S, which are a union of a finite
number of equilateral triangles of side h. Let S, denote the nodes, or
mesh points, which are points of S, and let R, be all other nodes. If
we consider the real function wu(x), where z is a node, xe R,, then in-
terpreting x as a point in the complex plane, we have that x + hw, is
also a node of the triangular mesh, where w, is any complex root of
22+1=0.

Consider the following special numerical approximation to the Dirichlet
problem for Q:

(21) u(x)—%;:u(oc-{—hwj):O, zeR,,

where the values w(x), x € S,, are prescribed. The matrix M determined
by this system of linear equations is 3-cyclic, and generalized successive
overrelaxation applies in this case.

As a second application, we consider the Peaceman-Rachford iteration
scheme [7]. (See also [4] and [3].) We suppose that the matrix M of (1)
can be expressed in form

(22) M=H+V,

where H and V are symmetric and positive definite, and are similar to
tridiagonal or Jacobi matrices. With equation (22), (1) is equivalent, for
any scalar p, to each of the equations

(23) (H+ oDz =k — (V — pD)a,
(23 (V+oDiE =k — H— pl)z .

The Peaceman-Rachford implicit alternating direction method consists in
using the implicit process defined by

(24) (H + D3 =k — (V — pD)a,
(24') (V + 0,DEpey = k — (H — p,1)i5

for a suitable sequence of non-negative scalars o, 0,, ---. Since the
matrices H and V are tridiagonal, equations (24)-(24’) can be rapidly
solved by means of Gauss elimination. In typical computational applica-
tions, only a finite number of non-negative scalars p,, 0, +-+, 0, are
used, these values being repeated cyclically in (24)-(24").

The concept of a cyclic matrix, as given in Definition 1, can now
be profitably applied to Peaceman-Rachford iteration scheme. The basic
equations (23)-(23') are clearly equivalent to
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H+ pl V— pl\/Z k
e [ o) ()
H—plI V4 pl/\% k

where (%) is a column vector with 2n components.

For p > 0, the diagonal blocks of the matrix of (25) are non-singular,
and (25) is equivalent to:

(26) Ww=DBu+g,
where
< 0 (H + pI) (oI - V)
@7 B, = )
(V + poI)"(pl — H) 0
o = .61 == (H + pI)—l ié
1) [g (§2=(V+pl)'1 E) '

By definition, B, is cyclic of index 2. It can be show that B, satisfies
(block) property (A~®), and is consistently ordered in the sense of [1].
For fixed o > 0, the Gauss-Seidel (block) iteration scheme applied to (26)
gives

Frev = (H + pI)™(oI — V)&™ + (H + pI)7'k,

(28) .
#r 0 = (V + pI) ™ol — H)E™ + (V+ o)k ,

or equivalently,

(H+ pI)@’gm+l) — (pI . V)a':gm) _'_ ]z’

(29) |
(V + ()I)Zv',(zmﬂ) = (‘()I — H);‘v’(lmu) + k.

This, except for notation, is equivalent to (24)-(24’) for a single fixed
factor p. Generalizing, if the Peaceman-Rachford iteration scheme uses
/ parameters 0,, 0,, - -+, 0, cyclically, then we consider
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where
(0 0 T,
U, 0 0 0
O 2
(31) B,y =| Lo 0 o,
0 0 .-+ U, 0
and

@r)  T,=H+ D)o, L - V); Uy =(V+ p,1)o,] — H) .

By definition, By, ) 1s cyclic of index 2/ and 7 is a column vector with
2n- components. Morever, if we use the extension of the results of
§§2-3 to block overrelaxation, as was stated to be possible in the
introduction, then By, is a consistently ordered 2-/-cyclic matrix. The
application of the Gauss-Seidel block iteration scheme to (30), with
B, defined in (31), is exactly the Peaceman-Rachford scheme with ~
parameters used cyclically. This gives us the following

THEOREM 7. The Peaceman-Rachford iteration scheme (24)-(24') is
the Gauss-Seidel block iteration scheme applied to the 2/-cyclic matrix
B(pl) of (31).

The special case p, = 0, = +-- = 0, is admitted in the preceding
result.

Since the Peaceman-Rachford scheme can be considered as the Gauss-
Seidel block iteration scheme applied to a consistently order 2/-cyclic
matrix, the results of §4 strongly suggest the application of successive
over-relaxation to the Peaceman-Rachford scheme. For the case ~ =1,
over-relaxation applied to (28) results in

(32) ™ = w{(H + pl) (oI — V)z&™ + (H + IOI)‘% — 2™} + z™,
(32) FHmrv = o{(V + o) (oI — H)FE"™ + (V + ‘OI)”E— ) zm

Unfortunately, it is hard to predict the rate of convergence of iterative
schemes based on (32)-(32'), because their spectra are difficult to estimate.
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