
Porting Source to Linux

Valve’s Lessons Learned

Overview

 Who is this talk for?

 Why port?

 Windows->Linux

 Linux Tools

 Direct3D->OpenGL

Why port?

Why port?

 Linux is open

 Linux (for gaming) is

growing, and quickly

 Stepping stone to mobile

 Performance

 Steam for Linux
% December January February

Windows 94.79 94.56 94.09

Mac 3.71 3.56 3.07

Linux 0.79 1.12 2.01

0%

1%

10%

100%

Nov Dec Jan Feb

Linux Mac Windows

Why port? – cont’d

 GL exposes functionality by hardware

capability—not OS.

 China tends to have equivalent GPUs, but overwhelmingly

still runs XP

— OpenGL can allow DX10/DX11 (and beyond) features for all of

those users

Why port? – cont’d

 Specifications are public.

 GL is owned by committee, membership

is available to anyone with interest (and some, but not a

lot, of $).

 GL can be extended quickly, starting with a single vendor.

 GL is extremely powerful

Windows->Linux

Windowing issues

 Consider SDL!

 Handles all cross-platform windowing issues, including on

mobile OSes.

 Tight C implementation—everything you need, nothing you

don’t.

 Used for all Valve ports, and Linux Steam
http://www.libsdl.org/

http://www.libsdl.org/
http://www.libsdl.org/

Filesystem issues

 Linux filesystems are case-sensitive

 Windows is not

 Not a big issue for deployment (because everyone ships

packs of some sort)

 But an issue during development, with loose files

 Solution 1: Slam all assets to lower case, including

directories, then tolower all file lookups (only adjust below

root)

 Solution 2: Build file cache, look for similarly named files

Other issues

 Bad Defines

— E.g. Assuming that LINUX meant DEDICATED_SERVER

 Locale issues

— locale can break printf/scanf round-tripping

— Solution: Set locale to en_US.utf8, handle internationalization

internally

— One problem: Not everyone has en_US.utf8—so pop up a warning in

that case.

More Other Issues

 Font

— Consider freetype and fontconfig

— Still work determining how to translate font sizes to linux

 RDTSC (use clock_gettime(CLOCK_MONOTONIC) instead)

 Raw Mouse input

— Great, but some window managers also grab the keyboard

— This breaks alt-tab. Grr.

 Multi-monitor is less polished than Windows

— SDL mostly handles this for you

Linux Tools

Steam Linux Runtime (and SDK)

 Runtime provides binary compatibility across many Linux

distros for end users

 SDK has everything you’ll need to target the runtime in one

convenient set of packages

 Debug versions available, too

— For both developers and end users

 http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz

 https://github.com/ValveSoftware/steam-runtime

http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime

Tools – CPU Compilation/Debug

 Compilation / Debug

— gcc – compilation

— gdb – debugging from 1970

— cgdb – debugging from 2000

— ldd – dumpbin for linux

— nm – for symbol information

— objdump – disassembler / binary details

— readelf – more details about binaries

— make – no, really

 We’ll talk about GPU Debug tools later

Tools – CPU Perf analysis

 perf – free sampling profiler

 vtune – Intel’s tool works on Linux, too!

 Telemetry – You’re using this already, right?

 Again, we’ll talk about GPU perf tools later

Telemetry

 Telemetry is a performance visualization system on steroids,

created by RAD Game Tools.

 Very low overhead (so you can leave it on all through

development)

 Quickly identify long frames

 Then dig into guts of that

frame

Telemetry Details

Direct3D -> OpenGL

Which GL should you support?

 DX9 ≈ OpenGL 2

— Shaders

 DX10 ≈ OpenGL 3

— Streamlined API

— Geometry Shaders

 DX11 ≈ OpenGL 4

— Tessellation and Compute

Direct3D Support

D3D11

D3D10

D3D9 (and

below)

D3D11 GPU / D3D11 Capable OS

D3D10 GPU / D3D10 Capable OS

D3D10 GPU / D3D9 Capable OS

D3D9 (or below) GPU / All OSes

Sep 2011 Feb 2013

OpenGL Support

D3D10

D3D9

D3D11 GPU / D3D11 Capable OS

D3D10 GPU / D3D10 Capable OS

D3D10 GPU / D3D9 Capable OS

D3D9 (or below) GPU / All OSes

Sep 2011 Feb 2013

D3D11

togl

 “to GL”

 A D3D9/10/11 implementation using

OpenGL

 In application, using a DLL.

 Engine code is overwhelmingly

(99.9%) unaware of which API is

being used—even rendering.

Source Engine

Matsys Shaderlib ShaderAPI

Direct3D

GPU

togl

 “to GL”

 A D3D9/10/11 implementation using

OpenGL

 In application, using a DLL.

 Engine code is overwhelmingly

(99.9%) unaware of which API is

being used—even rendering.

 Perf was a concern, but not a problem—this stack beats the

shorter stack by ~20% in apples:apples testing.

Source Engine

Matsys Shaderlib ShaderAPI

“CDirect3D9” (togl)

OpenGL

GPU

togl: Major pieces

 Textures, VBs, IBs

 Device Creation

— D3DCAPS9 (yuck!)

 Shaders

— togl handles this, too!

GL / D3D differences

 GL has thread local data

— A thread can have at most one Context current

— A Context can be current on at most one thread

— Calls into the GL from a thread that has no current Context are

specified to “have no effect”

— MakeCurrent affects relationship between current thread and a

Context.

Context Thread Context Thread

Thread

Thread

Context Thread

Context

Context

GL / D3D differences

 GL is C based, objects referenced by handle

— Many functions don’t take a handle at all, act on currently

selected object

— Handle is usually a GLuint.

 GL supports extensions

 GL is chatty, but shockingly efficient.

— Do not judge a piece of code by the number of function calls.

— Profile, profile, profile!

 GL doesn’t suffer lost devices

GL extensions

 NV|AMD|APPLE extensions are vendor specific (but may still be supported
cross-vendor)

— Ex: NV_bindless_texture

 EXT are multi-vendor specs

— Ex: EXT_separate_shader_objects

 ARB are ARB-approved

— Ex: ARB_multitexture

 Core extensions

— A core feature from a later GL version exposed as an extension to an earlier GL
version.

 Platform extensions (WGL|GLX|AGL|EGL)

 Consider GLEW or similar to wrangle extensions

 http://www.opengl.org/wiki/OpenGL_Extension

http://www.opengl.org/wiki/OpenGL_Extension

GL tricks

 When googling for GL functions, enums, etc, search with

and without the leading gl or GL_

 Reading specs will make you more powerful than you can

possibly imagine

 Don’t like where GL is heading? Join Khronos Group and

shape your destiny.

GL objects

 GL has many objects: textures, buffers, FBOs, etc.

 Current object reference unit is selected using a selector,

then the object is bound.

 Modifications then apply to the currently bound object.

 Most object types have a default object 0.

GL Object Model (cont’d)

// Select texture unit 3.
glActiveTexture(GL_TEXTURE0 + 3);

// bind texture object 7, which is a 2D texture.
glBindTexture(GL_TEXTURE_2D, 7);

// Texture object 7 will now use nearest filtering for
// minification.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

Core vs Compatibility

 Some IHVs assert Core will be faster

 No actual driver implementations have demonstrated this

 Tools starting with Core, but will add Compat features as

needed.

 Some extensions / behaviors are outlawed by Core.

 Recommendation: Use what you need.

Useful extensions

 EXT_direct_state_access

 EXT_swap_interval (and EXT_swap_control_tear)

 ARB_debug_output

 ARB_texture_storage

 ARB_sampler_objects

EXT_direct_state_access

 Common functions take an object name directly, no binding

needed for manipulation.

 Code is easier to read, less switching needed.

 More similar to D3D usage patterns
 http://www.opengl.org/registry/specs/EXT/direct_state_access.txt

http://www.opengl.org/registry/specs/EXT/direct_state_access.txt

EXT_direct_state_access cont’d

GLint curTex;
glGetIntegeriv(GL_TEXTURE_BINDING_2D, &curTex);
glBindTexture(GL_TEXTURE_2D, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_2D, curTex);

 Becomes

glTextureParameteriEXT(7, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

DSA when DSA is unavailable

 DSA is a driver-only extension—hardware is irrelevant.

 Write client code that assumes DSA

 Provide your own DSA function(s) when DSA is unavailable

 When resolving functions, use a pointer to your function if

extension is unavailable.

void myTextureParameteriEXT(GLuint texture, GLenum target,
 GLenum pname, GLint param)
{
 GLint curTex;
 glGetIntegeriv(GL_TEXTURE_BINDING_2D, &curTex);
 glBindTexture(target, texture);
 glTexParameteri(target, pname, param);
 glBindTexture(target, curTex);
}

EXT_swap_interval

 Vsync, but can be changed dynamically at any time.

 Actually a WGL/GLX extension.

wglSwapInterval(1); // Enable VSYNC

wglSwapInterval(0); // Disable VSYNC

 http://www.opengl.org/wiki/Swap_Interval

 http://www.opengl.org/registry/specs/EXT/wgl_swap_control.txt

 http://www.opengl.org/registry/specs/EXT/swap_control.txt

http://www.opengl.org/wiki/Swap_Interval
http://www.opengl.org/registry/specs/EXT/wgl_swap_control.txt
http://www.opengl.org/registry/specs/EXT/swap_control.txt

EXT_swap_control_tear

 XBox-style Swap-tear for the PC.

— Requested by John Carmack.

 First driver support a few weeks later

 All vendors supported within a few months

 wglSwapIntervalEXT(-1); // Try to vsync, but tear if late!

 http://www.opengl.org/registry/specs/EXT/wgl_swap_control_tear.txt

 http://www.opengl.org/registry/specs/EXT/glx_swap_control_tear.txt

http://www.opengl.org/registry/specs/EXT/wgl_swap_control_tear.txt
http://www.opengl.org/registry/specs/EXT/glx_swap_control_tear.txt

ARB_debug_output

 You provide a callback when the driver detects an error—get fed
a message.

 When the driver is in single-
threaded mode, you can see
all the way back into your
own stack.

 Supports fine-grained message
control.

 And you can insert your own
messages in the error stream
from client code.

 Quality varies by vendor, but
getting better.

ARB_debug_output cont’d

// Our simple callback
void APIENTRY myErrorCallback(GLenum _source,
 GLenum _type, GLuint _id, GLenum _severity,
 GLsizei _length, const char* _message,
 void* _userParam)
{
 printf("%s\n", _message);
}

// First check for GL_ARB_debug_output, then...
glDebugMessageCallbackARB(myErrorCallback, NULL);
glEnable(GL_DEBUG_OUTPUT);

More Useful GL Extensions

 NVX_gpu_memory_info / GL_ATI_meminfo

— Get memory info about the underlying GPU

 GL_GREMEDY_string_marker

— D3DPERF-equivalent

 GL_ARB_vertex_array_bgra

— better matches UINT-expectations of D3D

 GL_APPLE_client_storage / GL_APPLE_texture_range

— Not for linux, but useful for Mac.

GL Pitfalls

 Several pitfalls along the way

— Functional

 Texture State

 Handedness

 Texture origin differences

 Pixel Center Convention (D3D9->GL only)

— Performance

 MakeCurrent issues

 Driver Serialization

 Vendor differences—be sure to test your code on multiple

vendors

Texture State

 By default, GL stores information about how to access a

texture in a header that is directly tied to the texture.

 This code doesn’t do what you want:

 Texture*

Sampler

Info
Image Data

* Not to scale

Texture State cont’d

glBindMultiTextureEXT(GL_TEXTURE0 + 0, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

glBindMultiTextureEXT(GL_TEXTURE0 + 1, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

// Draw

ARB_sampler_objects

 With ARB_sampler_objects, textures can now be accessed

different ways through different units.

 Samplers take precedence over texture headers

 If sampler 0 is bound, the texture header will be read.

 No shader changes required
 http://www.opengl.org/registry/specs/ARB/sampler_objects.txt

http://www.opengl.org/registry/specs/ARB/sampler_objects.txt

Using sampler objects

Gluint samplers[2];
glGenSamplers(2, samplers);
glSamplerParameteri(samplers[0], GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glSamplerParameteri(samplers[1], GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

glBindSampler(0, samplers[0]);
glBindSampler(1, samplers[1]);
glBindMultiTextureEXT(GL_TEXTURE0 + 0, 7);
glBindMultiTextureEXT(GL_TEXTURE0 + 1, 7);
// Draw

Other GL/D3D differences (cont’d)

 Handedness

— D3D is left-handed everywhere, GL is right-handed everywhere

— Texture origin is lower-left in GL (flip coordinates about v)

— Consider rendering upside-down, flipping at the end.

 GLSL uses column-major matrices by default

— Including when specifying constants/uniforms

 Pixel Centers

— OpenGL matches D3D10+

MakeCurrent issues

 Responsible for several bugs on TF2

 Font rendering glitches (the thread creating text tries to

update the texture page, but didn’t own the context

MakeCurrent Performance

 Single-threaded is best here.

 MakeCurrent is very

expensive—try not to

call even once/twice

per frame.

MakeCurrent – Fixed

Driver Serialization

 Modern OpenGL drivers are dual-core / multithreaded

— Your application speaks to a thin shim

— The shim moves data over to another thread to prepare for

submission

— Similar to D3D

 Issuing certain calls causes the shim to need to flush all

work, then synchronize with the server thread.

 This is very expensive

Known naughty functions

 glGet(…) – Most of these cause serialization; shadow state

(just like D3D)

 glGetError - use ARB_debug_output!

 Functions that return a value

 Functions that copy a non-determinable amount of client

memory, or determining the memory would be very hard

Detecting Driver Serialization

 ARB_debug_output to the rescue!

 Place a breakpoint in your callback, look up the callstack to

see which call is causing the problem

 Message in ARB_debug_output to look for: “Performance

warning: synchronous call is forcing a worker thread stall”

Device (Context) Creation in GL

 Creating a simple context in GL is easy:

— Create a Window

— Create a Context

 Whether this gets you a Core or Compatibility context is

unspecified , but most vendors give you Compatibility.

 Creating a “robust” context with a specific GL-support

version requires using a WGL/GLX extension, and is trickier:

Context Creation – Cont’d

1. Create a window (don’t show)

2. Create a context

3. Query for window-specific extensions

4. Create another window (this will be the application window)

5. Create a context using extension function from step 3.

6. Destroy Context from step 2.

7. Destroy window from step 1.

 Yuck.

 With SDL, SDL_GL_SetAttribute + SDL_CreateWindow.

Common D3D Idioms in GL

 Vertex Attributes

 Vertex Buffers

 Textures

 Render to texture

 Shaders

Vertex Attributes

glBindBuffer(GL_ARRAY_BUFFER, mPositions);
// glVertexAttribPointer remembers mPositions
glVertexAttribPointer(mProgram_v4Pos, 4, GL_FLOAT,
 GL_FALSE, 0, 0);
glEnableVertexAttribArray(mProgram_v4Pos);

glBindBuffer(GL_ARRAY_BUFFER, mNormals);
// glVertexAttribPointer remembers mNormals
glVertexAttribPointer(mProgram_v3Normal, 3, GL_FLOAT,
 GL_FALSE, 0, 0);
glEnableVertexAttribArray(mProgram_v3Normal);

Vertex Attribs – Alternative #1

 Vertex Attribute Objects (VAOs)

 Good mapping for D3D (seductive!)

 Slower than glVertexAttribPointer on all implementations

 Recommendation: Skip it

ARB_vertex_attrib_binding

 Separates Format from Binding

 Code is easy to read

glVertexAttribFormat(0, 4, GL_FLOAT, FALSE, 0);
glVertexAttribBinding(0, 0);
glBindVertexBuffer(0, buffer0, 0, 24);
 http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt

http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt

Vertex (and Index) Buffer Creation

GLuint vb = 0, ib = 0;
glGenBuffers(1, &vb);
glNamedBufferDataEXT(vb, vbLengthBytes, vbPtr, vbUsage);

glGenBuffers(1, &ib);
glNamedBufferDataEXT(ib, ibLengthBytes, ibPtr, ibUsage);

Vertex (and Index) Buffer Updates

// NO_OVERWRITE is implied if you specify non-overlapping
// regions.
glNamedBufferSubDataEXT(vb, vbOffset, vbLength, vbPtr);
glNamedBufferSubDataEXT(ib, ibOffset, ibLength, ibPtr);

// DISCARD.
glNamedBufferDataEXT(vb, vbLength, vbPtr, vbUsage);
glNamedBufferDataEXT(ib, ibLength, ibPtr, ibUsage);

Vertex (and Index) Buffer Using

// Binding VBs also involves setting up VB attributes.
glBindBuffer(GL_ARRAY_BUFFER, vb);
glVertexAttribPointer(mProgram_pos, 3, GL_FLOAT, GL_FALSE, 24, 0);
glVertexAttribPointer(mProgram_n, 3, GL_FLOAT, GL_FALSE, 24, 12);
glEnableVertexAttribArray(mProgram_pos);
glEnableVertexAttribArray(mProgram_n);

// We finally know what the type is!
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib);

Dynamic Buffer Updates

 Don’t use MapBuffer—because it returns a pointer, it causes

driver serialization.

 Even worse, it probably causes a CPU-GPU sync point. 

 Instead, use BufferSubData on subsequent regions, then

BufferData when it’s time to discard.

Render to Texture

 Render-to-texture in GL utilizes Frame Buffer Objects

(FBOs)

 FBOs are created like other objects, and have attachment

points. Many color points, one depth, one stencil, one

depth-stencil

 FBOs must be “framebuffer complete” to be rendered to.

 FBOs, like other “container objects,” are not shared

between contexts. 
 http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

Frame Buffers

 Spec has fantastic examples for creation, updating, etc, so

not replicating here

 Watch BindRenderTarget (and BindDepthStencil) etc calls

 At draw time, check whether render targets are in an

existing FBO configuration (exactly) via hash lookup

 If so, use it.

 If not, create a new FBO, bind attachments, check for

completeness and store in cache.

Frame Buffers – Don’ts

 Do not create a single FBO and then swap out attachments

on it.

 This causes lots of validation in the driver, which in turn

leads to poor performance.

Shaders/Programs

 In GL, Shaders are attached to a Program.

— Each Shader covers a single shader stage (VS, PS, etc)

 Shaders are Compiled

 Programs are Linked

 The Program is “used”

 This clearly doesn’t map particularly well to D3D, which

supports mix-and-match.

Shaders/Programs cont’d

 GL Uniforms == D3D Constants

 Uniforms are part of program state

— Swapping out programs also swaps uniforms

— This also maps poorly to D3D. 

Uniform problem

 To solve the uniform problem, consider uniform buffer

objects

— Create a single buffer, bind to all programs

— Modify parameters in the buffer

 Or, keep track of “global” uniform state and set values just

prior to draw time

 If you’re coming from D3D11, Uniform Buffers ARE Constant

Buffers—no problems there.
 http://www.opengl.org/wiki/Uniform_Buffer_Object

 http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

http://www.opengl.org/wiki/Uniform_Buffer_Object
http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

Shader Approach #1: Program Hash

 Pay attention to shaders that get set.

 At draw time, hash the names of the shaders to see if an

existing program object has been linked

 Otherwise, link and store in the hash

Shader Translation

 You have a pile of HLSL. You need to give GL GLSL.

— ARB_vertex_program / ARB_fragment_program is a possible

alternative, but only for DX9.

 No *_tessellation_program

Shader Translation cont’d

 One approach: compile HLSL, translate the byte code to

simple GLSL asm-like.

 Pro: One set of shaders goes public

 Pro: Can be fast

 Con: Can be hard to debug problems

 Con: Potentially slow fxc idioms end up in generated GLSL

 Con: Debugging requires heavy cognitive load

Other Translation Approaches

 Open Source Alternatives

— HLSLCrossCompiler – D3D11 only (SM4/5)

— MojoShader – SM1/2/3

 Shipped in several games and engines, including Unreal Tournament 3, Unity.

 https://github.com/James-Jones/HLSLCrossCompiler

 http://icculus.org/mojoshader/

https://github.com/James-Jones/HLSLCrossCompiler
https://github.com/James-Jones/HLSLCrossCompiler
https://github.com/James-Jones/HLSLCrossCompiler
http://icculus.org/mojoshader/

Performance tips

 Profile

 Profile

 Profile

Performance tips – cont’d

 For best performance, you will have to write vendor-

specific code in some cases.

 But you were probably doing this anyways

 And now behavior is specified in a public specification.

GL Debugging and Perf Tools

 NVIDIA Nsight supports GL 4.2 Core.

— With some specific extensions

— More extensions / features coming!

 PerfStudio and gDEBugger

 CodeXL

 Apitrace

— Open Source api tracing tool—has scaling issues which Valve is

working to fix.

GL Debugging Tricks

 Compare D3D to GL images

 Keep them both

working on the

same platform

 Bonus points:

Have the game

running on two machines,

broadcast inputs to both,

compare images in

realtime.

Questions?

 jmcdonald at nvidia dot com

 richg at valvesoftware dot com

Appendix

 Some other GL gotchas/helpers

Magic Symbol Resolution

 Linux equivalent of _NT_SYMBOL_PATH

 In ~/.gdbinit:

— set debug-file-directory /usr/lib/debug:/mnt/symstore/debug

 /mnt/symstore/debug is a shared, remotely mounted share with your

symbols

 Populate that server with symbols

 Currently only applied to gdb, should also apply to Google’s perf tool

“soon”

http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/

http://fedoraproject.org/wiki/Releases/FeatureBuildId

http://randomascii.wordpress.com/category/symbols-2/

http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://fedoraproject.org/wiki/Releases/FeatureBuildId
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/

Performance tips

 Force-inline is your friend—many of the functions you’ll be

implementing are among the most-called functions in the

application.

 With few exceptions, you can maintain a GL:D3D call ratio

of 1:1 or less.

— For example, use glBindMultiTextureEXT instead of

glActiveTexture/glBindTexture.

— glBindMultiTextureEXT(texUnit, target, texture)

Other useful GL references

 http://www.opengl.org/wiki/Common_Mistakes

 OpenGL SuperBible: Comprehensive Tutorial and Reference (5th Edition)

— http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/

 OpenGL 4.2 Quick Reference Card

— http://www.khronos.org/files/opengl42-quick-reference-card.pdf

http://www.opengl.org/wiki/Common_Mistakes
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf

Sampler gotchas…

 On certain drivers, GL_TEXTURE_COMPARE_MODE (for

shadow map lookups) is buggy when set via sampler.

 For robustness, use texture setting on those particular

drivers.

Latched State

 Recall that GL is very stateful.

 State set by an earlier call is often captured (latched) by a

later call.

 Vertex Attributes are the prime example of this, but there

are numerous other examples.

Textures (Creation)

GLuint texId = 0;
// Says “This handle is a texture”
glGenTextures(1, &texId);

// Allocates memory
glTextureStorage2DEXT(texId, GL_TEXTURE_2D, mipCount,
 texFmt, mip0Width, mip0Height);

// Pushes data—note that conversion is performed if necessary
foreach (mipLevel) {
 glTextureSubImage2DEXT(texId, GL_TEXTURE_2D, mipLevel,
 0, 0, mipWidth, mipHeight,
 srcFmt, srcType, mipData);
}

Textures (Updating)

 With TexStorage, updates are just like initial data

specification (glTextureSubImage or

glCompressedTextureSubImage).

 Texture->Texture updates are covered later

 On-GPU compression is straightforward, implemented in
https://code.google.com/p/nvidia-texture-tools/

— MIT License, use freely!

 Or copy Simon Green’s technique:
— http://developer.download.nvidia.com/SDK/10/opengl/samples.html#compress_YCoCgDXT

https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
http://developer.download.nvidia.com/SDK/10/opengl/samples.html
http://developer.download.nvidia.com/SDK/10/opengl/samples.html

Textures (Setting State)

// Sets minification filtering on texture 7
// This parameter will be ignored if a sampler is bound.
glTextureParameteri(7, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

Textures (Using)

// Binds texture 7 to texture unit 3.
glBindMultiTextureEXT(3, GL_TEXTURE_2D, 7);

StretchRect

 Implementing StretchRect in GL involves using Read/Write

FBOs.

 Bind source as a read target

 Bind destination as a write target

 Draw!

 Alternatives:

— No stretching/format conversion? EXT_copy_texture

— Stretching / format conversion? NV_draw_texture

StretchRect – MSAA case

 When MSAA is involved, use

EXT_framebuffer_multisample_blit_scaled

 Allows resolving and resizing in a single blit

 Otherwise two blits needed (one for resolve, one for resize)

Other GL/D3D differences

 Clip Space

— D3D:

 -w <= x <= w

 -w <= y <= w

 0 <= z <= w

— GL

 -w <= x <= w

 -w <= y <= w

 -w <= z <= w

— But anything with w < 0 still clipped by W=0 clipping

 Latched State – let’s get back to this.

