
Hugo Musso Gualandi

The Pallene Programming Language

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Roberto Ierusalimschy

Rio de Janeiro
May 2020

Hugo Musso Gualandi

The Pallene Programming Language

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee.

Prof. Roberto Ierusalimschy
Advisor

Departamento de Informática – PUC-Rio

Prof. Waldemar Celes Filho
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Prof. Francisco Figueiredo Goytacaz Sant’Anna
Universidade Estadual do Rio de Janeiro – UERJ

Prof. Philip Wadler
University of Edinburgh

Renato Fontoura de Gusmão Cerqueira
IBM Research Brazil

Rio de Janeiro, May 8th, 2020

All rights reserved.

Hugo Musso Gualandi

Graduated in 2011 with a Bachelor’s Degree in Molecular
Sciences from the University of São Paulo (USP). In 2015,
received a Master’s Degree in Informatics from the Pontifícia
Universidade Católica do Rio de Janeiro (PUC-Rio).

Bibliographic data
Musso Gualandi, Hugo

The Pallene Programming Language / Hugo Musso
Gualandi; advisor: Roberto Ierusalimschy. – Rio de Janeiro:
PUC-Rio, Departamento de Informática, 2020.

v., 95 f: il. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Linguagens de Scripting. 3.
Tipagem Gradual. 4. Compiladores. I. Ierusalimschy, Roberto.
II. Pontifícia Universidade Católica do Rio de Janeiro. Depar-
tamento de Informática. III. Título.

CDD: 004

This thesis is dedicated to my family, my friends, and my professors.
This would not have been possible without you.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

It was also financed in part by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico – Brasil (CNPQ) – Finance Codes 153918/2015-2 and
305001/2017-5.

Abstract

Musso Gualandi, Hugo; Ierusalimschy, Roberto (Advisor). The
Pallene Programming Language. Rio de Janeiro, 2020. 95p.
Tese de doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

The simplicity and flexibility of dynamic languages makes them popular
for many applications but also makes them hard to optimize. Programmers
and language designers have approached this problem in many ways, including
scripting, just-in-time compilers, and optional types, each one with different
tradeoffs.

In a scripting architecture, a dynamic language glues together compo-
nents written in a faster system language. Each language is used for the tasks
for which it is well-suited. However, the cost of passing data from one language
to the other can be hard to predict. Just-in-time compilers translate dynamic
languages to fast machine code, based on type information collected at run-
time. However, these compilers are complex and some constructions cannot be
optimized as well as others. Optional type systems can retrofit a static type
system into an existing dynamic language but it is not easy to design a type
system that is simultaneously simple, expressive, and fast.

In this thesis we describe a new approach to the problem of the per-
formance of dynamic languages. Combining ideas from scripting, just-in-time
compilers, and optional types, we propose using the framework of optional
types to create an efficient subset of an existing dynamic language. This typed
subset is designed to allow ahead-of-time compilation to efficient machine code
and to minimize the overhead of function calls between typed and untyped
code. The subset can be seen as a companion language for the dynamic lan-
guage, conceived to be used in conjunction with it and playing the role of a
system language in the traditional scripting paradigm. Our example is Pallene,
a typed language designed to be scripted from Lua.

Pallene’s performance is comparable to that of a just-in-time compiler
for Lua but its ahead-of-time compiler is simpler and more portable; this is
particularly relevant in the context of Lua, which is often used as an embedded
scripting language. The overhead of calling Pallene from Lua is small. We show
that in programs that mix Lua and Pallene modules, rewriting a Lua module
in Pallene usually improves the program’s performance, and never worsens it.
This is not always the case in other languages, where the cost of crossing a
language boundary can be high.

Finally, we also present the basis for a formalization of Pallene’s seman-
tics. That work suggests that in addition to controlling when type errors may

occur it is also important to control when values are stored in a tagged (boxed)
or in an untagged (unboxed) data representation.

Keywords
Scripting Languages; Gradual Typing; Compilers;

Resumo

Musso Gualandi, Hugo; Ierusalimschy, Roberto. A Linguagem
de Programação Pallene. Rio de Janeiro, 2020. 95p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

A simplicidade e flexibilidade das linguagens dinâmicas as torna popula-
res em várias aplicações, porém também as torna difíceis de serem otimizadas.
Programadores e criadores de linguagens de programação têm abordado este
problema de várias maneiras, incluindo a arquitetura de scripting, compilado-
res just-in-time e sistemas de tipos opcionais. Cada uma destas abordagens
traz consigo diversos prós e contras.

Na arquitetura de scripting, a linguagem dinâmica agrega componentes
escritos em uma linguagem de sistema mais rápida. Cada linguagem é usada
para as tarefas para as quais ela é a mais adequada. No entanto, pode ser
difícil prever o custo da conversão dos dados quando estes são passados de
uma linguagem para a outra. Compiladores just-in-time traduzem linguagens
dinâmicas para código de máquina eficiente, baseando-se em informações de
tipo coletadas durante a execução do programa. Contudo, estes compiladores
são complexos e algumas construções linguísticas não podem ser otimizadas
tão bem quanto outras. Sistemas de tipos opcionais permitem adicionar um
sistema de tipos estático a uma linguagem dinâmica existente, porém não é
fácil criar um sistema de tipos que seja simultaneamente simples, expressivo e
rápido.

Nesta tese, descrevemos uma nova abordagem para o problema do desem-
penho das linguagens dinâmicas. Combinando ideias de scripting, compiladores
just-in-time e sistemas de tipos opcionais, nós propomos usar conceitos de ti-
pos opcionais para criar um subconjunto tipado de uma linguagem dinâmica
existente. Este subconjunto tipado é projetado para ser compilável para código
de máquina eficiente e para minimizar o custo das chamadas de função entre
código tipado e não tipado. O subconjunto pode ser visto como uma linguagem
companheira concebida para ser usada junto com a linguagem dinâmica, cum-
prindo o papel da linguagem de sistema na tradicional arquitetura de scripting.
Nosso exemplo é Pallene, uma linguagem tipada criada para ser usada junto
com Lua.

O desempenho de Pallene é comparável ao de um compilador just-in-time
para Lua mas o compilador ahead-of-time de Pallene é mais simples e portátil;
isto é especialmente relevante no contexto de Lua, que é comumente usada
como uma linguagem de programação embutida. O custo de chamar Pallene
a partir de Lua é baixo. Nós mostramos que em programas que combinam

módulos escritos em Lua com módulos escritos em Pallene, reescrever um
módulo Lua em Pallene normalmente melhora o desempenho do programa,
e nunca o piora. Isto nem sempre ocorre em outras linguagens, onde o custo
de atravessar a fronteira entre linguagens pode ser bem alto.

Finalmente, nós também apresentamos a base para uma formalização da
semântica de Pallene. Este trabalho sugere que, além de levar em conta quando
os erros de tipo podem ocorrer, também é importante levar em conta quando
os valores são armazenados em uma representação de dados etiquetada ou em
uma não etiquetada.

Palavras-chave
Linguagens de Scripting; Tipagem Gradual; Compiladores;

Table of contents

1 Introduction 11

2 Optimizing Scripting Languages 15
2.1 The Scripting Architecture 15
2.2 Just-in-time Compilers 16
2.3 Optional Type Systems 19
2.4 Ahead-of-time Compilers 20
2.5 Performance Evaluation of Lua-AOT 24

3 The Pallene Language 27
3.1 Syntax 30
3.2 Type System 30
3.3 Semantics 35
3.4 Implementation 37
3.5 Performance Validation of Pallene 38
3.6 Related Work 43

4 Pallene and the Performance of Gradually Typed Languages 45
4.1 Performance Challenges for Gradually Typed Languages 46
4.2 JIT Compilers for Dynamic Languages 48
4.3 Adding Types 50
4.4 Program Migration Performance Experiments for Pallene 52
4.5 Focusing the Design of Pallene 55
4.6 Summary 57

5 A Pair of Semantics for Pallene 59
5.1 λ-Dyn 60
5.2 λ-Pallene 62
5.3 Pallene Intermediate Representation (PIR) 64
5.4 The Late-checking Translation 69
5.5 The Early-checking Translation 71
5.6 Gradual Guarantee 75
5.7 Mutable PIR 80

6 Conclusion 86

Bibliography 89

1
Introduction

Dynamically typed languages are popular for a wide variety of applica-
tions, in part due to their ease-of-use and flexibility. However, performance is
usually not their strongest point. Over the years, programmers and language
designers have approached this problem from multiple directions, among them
scripting, just-in-time compilers, and static types. In this thesis we seek to
combine some of the positive aspects of these approaches, while avoiding their
shortcomings. We propose that, starting from an existing dynamic language,
it should be possible to create a typed companion language suitable for the
development of performant extension modules. We exemplify this approach
with Pallene, a typed companion language for Lua.

One of the classic applications of dynamic languages is in a scripting
architecture. In this setting, the dynamic language glues together components
written in a faster system language (Ousterhout 1998). “Rewrite it in C” is an
old piece of advice that many scripting language programmers may have heard
before. However, rewriting a piece of code in a completely different language is
easier said than done. Furthermore, the overhead of transferring data across a
language boundary can negate some or all of the speed gained from the typed
language, making it harder to predict the final impact of the rewrite in the
performance. In this thesis (in Chapter 3) we will show some examples where
rewriting part of a Lua program in C can make it slower.

Just-in-time (JIT) compilers represent the state of the art in optimization
for dynamic languages. They compile the program to efficient machine code
at run time, optimizing it based on information collected while the program
is running (Deutsch & Schiffman 1984). However, JIT compilers are complex
to implement and maintain. Additionally, the optimization they deliver is not
uniform because there often is a subset of the language that benefits more
from the compilation, which programmers are implicitly encouraged to target.
Programmers may need to rewrite their programs in order to achieve the best
performance results (Giraldez 2017, Antonov et al. 2007). Portability is also
an issue: JIT compilation may not be an option in certain mobile or embedded
platforms and may also not be an option in situations where the code must
reside in ROM (either due to limited RAM or by platform mandate).

Chapter 1. Introduction 12

As the name suggests, optional type systems allow programmers to par-
tially add types to programs. These systems combine the static typing and
dynamic typing disciplines in a single language. From static types they seek
better compile-time error checking, machine-checked lightweight documenta-
tion, and run-time performance. From dynamic typing they seek flexibility
and ease of use. One of the selling points of optional type systems is that they
promise a smooth transition from small dynamically typed scripts to larger
statically typed applications (Tobin-Hochstadt & Felleisen, Siek & Taha 2006,
Bracha 2004). For this to be true these type systems attempt to accommodate
common idioms of the dynamic language, which introduces additional com-
plexities and implementation challenges. It is hard to design a type system
that is at the same time simple, correct, and fast.

Both the scripting approach and optional types assume that programmers
need to restrict the dynamism of their code when they seek better performance.
Although in theory JIT compilers do not require this, in practice programmers
also need to restrict themselves to achieve maximum performance. Realizing
how these self-imposed restrictions result in the creation of vaguely defined
language subsets, and how restricting dynamism seems unavoidable, we asked
the question: what if we accepted the restrictions and defined a new program-
ming language based on them? By focusing on this “well behaved” subset and
making it explicit, instead of trying to optimize or type a dynamic language
in its full generality, we would be able to drastically simplify the type system
and the compiler.

Inspired by scripting, just-in-time compilation, and optional type sys-
tems, we have designed Pallene, a low-level counterpart to Lua. Pallene is a
typed subset of Lua, built on top of the Lua runtime. It is designed to be fast,
interoperable with Lua, and easy for Lua programmers to learn.

The key inspiration from JIT compilers is that they suggest that most
dynamic languages contain a subset which is efficient when it is compiled
to machine code. JIT compilers typically operate by collecting run-time
type information during an initial stage of execution, and then using that
type information to speculatively optimize the program, generating a more
efficient and type-specialized version of it. Our observation is that type
annotations make it possible to avoid some of the most complex aspects of
JIT compilers. One of these aspects is that JIT compilers need a way to undo
their optimizations when the optimized code encounters values of a type that
was not predicted by the profiling phase. With type annotations this is not
necessary because the type information is not speculative.

Optional type systems, in particular gradual typing, provided a theoret-

Chapter 1. Introduction 13

ical framework for how to add types to Lua in order to obtain Pallene. We
followed the guiding principle of the gradual guarantee (Siek et al. 2015). It
states that a program in the typed language (Pallene) should produce the
same result as the equivalent untyped (Lua) program obtained by removing
all the type annotations. The exception being that the typed program may
raise run-time type errors the untyped one would not. This means that if you
convert a Lua program to Pallene for better performance, the result will not
silently change.

Structure of this thesis

In the first chapters of this thesis we discuss the problem of optimiz-
ing dynamic languages and we introduce Pallene, a language that we cre-
ated to demonstrate the idea of typed companion languages. This introduc-
tion chapter and chapters 2 and 3, borrow heavily from one of our papers,
Pallene: A companion language for Lua (Gualandi & Ierusalimschy 2020),
which is an extended version of a previous paper with a similar title
(Gualandi & Ierusalimschy 2018).

In Chapter 2 we review existing approaches used to improve the perfor-
mance of dynamic languages, namely scripting, just-in-time compilers, ahead-
of-time compilers, and optional type systems. We also present the Lua-AOT,
an ahead-of-time compiler for Lua.

In Chapter 3 we introduce Pallene, a companion language for Lua
intended for writing fast extension modules. Pallene is a typed subset of Lua,
which uses run-time tag checking to enforce type safety. It shares the same
runtime and garbage collector with Lua and it is compiled with an ahead-of-
time compiler. We also describe the syntax and type system of Pallene. We
briefly discuss its semantics, which is presented in more detail in Chapter 5.
We also discuss the implementation of Pallene and how our goals for Pallene
affected the implementation of its compiler. We evaluate the performance of
this implementation on a set of micro benchmarks, comparing it against pure
Lua (using either the reference interpreter or a just-in-time compiler), against
C extension modules which use the Lua–C API (Ierusalimschy et al. 2011), and
against pure C code. We also measure the overhead of run-time tag checking
in Pallene.

In Chapter 4 we turn our attention to the problem of performance for
gradually typed languages. We discuss how Pallene avoids the performance
slowdowns that are often present when other gradually typed languages mix
typed and untyped code. We show that converting parts of a Lua program into

Chapter 1. Introduction 14

Pallene often improves the performance and never worsens it. This part of the
thesis is based on the manuscript for another of our papers, A gradually typed
subset of a scripting language can be simple and efficient. This paper has been
submitted for publication at the Journal of Functional Programming and was
still undergoing peer review as of May/2020.

In Chapter 5 we present the semantics of Pallene in more detail. We
formalize a subset of Pallene and a corresponding subset of Lua, proving that
they are equivalent, with the exception of run-time type checking. We also
show how the guiding principle of the gradual guarantee allows for flexibility
in the choice of semantics for Pallene, by describing two different semantics for
Pallene that both obey the gradual guarantee.

Finally, in Chapter 6 we finalize our thoughts and summarize our
contributions.

2
Optimizing Scripting Languages

In this chapter we discuss four approaches that have been used to attack
the problem of the performance of dynamic languages. Namely, the scripting
architecture, just-in-time compilers, optional type systems, and ahead-of-
time compilers. In the section about ahead-of-time compilers we also present
Lua-AOT, an ahead-of-time compiler for Lua that we will use in some of our
experiments.

2.1
The Scripting Architecture

The archetypal application for a scripting language is a multi-language
system where the high-level scripting language is used in combination with a
low-level statically-typed system language (Ousterhout 1998). In this architec-
ture, the system language tends to be used for performance sensitive tasks,
while the more flexible scripting language is more suited for configuration,
orchestration, and situations where ease-of-development is at a premium.

Lua has been designed from the start with scripting in mind and many
applications that use Lua follow this approach (Ierusalimschy et al. 2007).
For instance, a computer game like Grim Fandango has a basic engine,
written in C++, that performs physical simulations, graphics rendering, and
other machine intensive tasks. The game designers, who were not professional
programmers, wrote all the game logic in Lua (Mogilefsky 1999).

From a performance point of view, the scripting architecture is pragmatic
and predictable. Each language can be used where it is more adequate and the
software architect can be relatively confident that the parts written in the
system language will have good performance. Moreover, scripting languages
are often implemented by small interpreters, which facilitates maintainability
and portability. Lua’s reference interpreter, for instance, has successfully been
ported to a wide variety of operating systems and hardware architectures, from
large web-servers to micro-controllers.

The fundamental downside of a multi-language architecture is the con-
ceptual mismatch between the languages. Rewriting a module to use a different
language is difficult. A common piece of advice when a Lua programmer seeks

Chapter 2. Optimizing Scripting Languages 16

better performance is to “rewrite it in C”, but this is easier said than done. In
practice, programmers only follow this advice when the code is mainly about
low-level operations that are easy to express in C, such as doing arithmetic and
calling external libraries. Another obstacle to this suggestion is that it is hard
to estimate in advance both the costs of rewriting the code and the perfor-
mance benefits to be achieved by the change. Often, the gain in performance
is not what one would expect. As we will show in Section 3.5, the overhead
of the language interface can sometimes cancel out the inherent performance
advantage of the system language.

2.2
Just-in-time Compilers

Just-in-time (JIT) compilers are the state of the art in dynamic language
optimization. A JIT compiler initially executes the program without any
optimization, observes its behavior, and then, based on this, generates highly
specialized and optimized executable code. For example, if it observes that
some code is always operating on values of type double, the compiler will
optimistically produce a version of this code that is specialized for that type.
It will also insert tests (called guards) that revert back to the generic version
of the code in case one of the values is not of type double as expected.

JIT compilers are broadly classified as either method-based or trace-
based (Gal et al. 2006), according to their main unit of compilation. In
method-based JITs, the unit of compilation is the function or subroutine. In
trace-based JITs, the unit of compilation is a linear trace of the program ex-
ecution, which may cross over function boundaries. Trace compilation allows
for a more embeddable implementation and is better at compiling across ab-
straction boundaries. However, it has trouble optimizing programs which con-
tain unpredictable branch statements. For this reason, most JIT compilers now
tend to use the method-based approach, with the notable exceptions of LuaJIT
(Pall 2005) and RPython-based JITs (Bolz et al. 2009, PyPy 2016).

Implementing a JIT compiler is a significant undertaking. Firstly, the
system must combine both an interpreter and a compiler. The interpreter,
in addition to being able to run programs, must also be able to profile their
execution. Furthermore, the implementation must be able to switch between
generic and optimized versions of the code, while the code itself is running.
This on-stack replacement can be particularly challenging to implement.
Furthermore, the overall performance is heavily influenced by compilation and
profiling overheads in the warm-up phase, meaning that there is a powerful
incentive to specialize the implementation to the target platform and to the

Chapter 2. Optimizing Scripting Languages 17

language being compiled, at the cost of portability and reusability.
There is ongoing research in the area of JIT development frameworks to

simplify JIT development—such as the metatracing of the previously men-
tioned RPython framework and the partial evaluation strategy of Truffle
(Würthinger et al. 2013)—but unfortunately these tools currently do not sup-
port the wide variety of environments where Lua runs. For example, neither
RPython nor Truffle can run on the Android or iOS operating systems. The
large size of their generated binaries also precludes their use in low-memory
environments. For reference, Lua can be used in devices with as low as 300KB
of RAM.

From the point of view of the software developer, the most attractive
aspect of JIT compilers is that they promise increased performance without
needing to modify the original dynamically typed program. However, these
gains are not always easy to achieve, because the effectiveness of JIT compiler
optimizations can be inconsistent. Certain code patterns, known as optimiza-
tion killers, may cause the whole section around them to be de-optimized,
resulting in a dramatic performance impact. Therefore, programmers must
accept that good performance depends on adapting the code to avoid these
optimization killers, by following advice from the official documentation or
from folk knowledge (Pall 2014, Antonov et al. 2007).

Since there may be an order of magnitude difference in performance
between JIT optimized and unoptimized code, there is a powerful incentive
to write programs in a style that is more amenable to optimization. This
often encourages unintuitive programming idioms. For example, LuaJIT’s
documentation recommends caching Lua functions from other modules in a
local variable (Pall 2012), as is shown in Figure 2.1. However, for C functions
accessed via the foreign function interface the rule is the other way around.

Another example from LuaJIT is the function in Figure 2.2, which runs
into several LuaJIT optimization killers (which the LuaJIT documentation
calls “Not Yet Implemented” features). As of LuaJIT 2.1, traces that call string
pattern-matching methods such as gsub are not compiled into machine code
by the JIT. That is also the case for traces that define anonymous functions,
even if the anonymous function does not access any variables of the enclosing
scope.

These patterns are not unique to LuaJIT, as every JIT has its own set of
quirks. For example, until 2016 the V8 JavaScript implementation could not
optimize functions containing a try-catch statement (Antonov et al. 2007). En-
couraging different coding styles is not the only way that JIT behavior affects
the software development process, either. Programmers resort to specialized

Chapter 2. Optimizing Scripting Languages 18

-- Slower
local function mytan(x)

return math.sin (x) / math.cos (x)
end

-- Faster
local sin , cos = math.sin , math.cos
local function mytan(x)

return sin(x) / cos(x)
end

-- Faster (!)
local function hello ()

C.printf ("Hello , world!")
end

-- Slower (!)
local printf = C.printf
local function hello ()

printf("Hello , world!")
end

Figure 2.1: LuaJIT encourages programmers to cache imported Lua functions
in local variables. However, the recommendation for C functions called through
the foreign function interface is surprisingly the other way around.

function increment_numbers (text)
return (text:gsub("[0 -9]+", function (s)

return tostring (tonumber (s) + 1)
end))

end

Figure 2.2: This function cannot be optimized by LuaJIT because it calls
the gsub method and because it uses an anonymous callback function.
These optimization killers negatively affect the performance not only of the
increment_numbers function but also of any trace that calls it.

Chapter 2. Optimizing Scripting Languages 19

debugging tools to discover which optimization killer is causing the perfor-
mance problems (Giraldez 2016). This may require reasoning at a low level of
abstraction, involving the intermediate representation of the JIT compiler or
its generated machine code.

Another aspect of JIT compilers is that before they can start optimizing,
they must run the program for many iterations in interpreter mode, collecting
run-time information. During this initial warm-up period the JIT will run
only as fast or even slower than a non-JIT implementation. Sometimes the
warm-up time can even be erratic, without a well-defined warmup phase
(Barret et al. 2017).

2.3
Optional Type Systems

Static types can serve several purposes. They are useful for error detec-
tion, can act as a form of lightweight documentation, and help the compiler
generate efficient code. As a result, there are many projects aiming to bring
these benefits to dynamic languages, using optional type systems to combine
the benefits of static and dynamic typing (Gualandi 2015).

A recurring idea to help the compiler produce more efficient code is to
allow the programmer to add type annotations to the program. Compared
with a more traditional scripting approach, optional typing promises a single
language instead of two different ones, making it easier for the static and
dynamic parts of the program to interact with each other. The pros and cons
of these optional type system approaches vary from case to case, since each
type system is designed for a different purpose. For example, the optional type
annotations of Common LISP allow the compiler to generate extremely efficient
code, but without any safeguards (Graham 1995). Meanwhile, in Typed Lua
the type annotations are only used for compile-time error detection, with no
effect on run-time performance.

A research area deserving special attention is Gradual Typing, which
aims to provide a solid theoretical framework for designing type systems that
integrate static and dynamic typing in a single language (Siek et al. 2015).
However, gradual type systems still face difficulties when it comes to run-time
performance. On the one hand, systems that fully check types as they cross the
boundary between the static and dynamic parts of the code are often plagued
with a high verification overhead cost (Takikawa et al. 2016). On the other
hand, type systems that perform type erasure at run-time usually give up on
the opportunity to optimize the static parts of the program.

To facilitate a smooth transition from untyped programs to typed ones,

Chapter 2. Optimizing Scripting Languages 20

optional type systems are typically designed to accommodate common idioms
from the dynamically typed language. However, this additional flexibility may
lead to a more complex type system, which is more difficult to use and, more
importantly to us, to optimize. In Lua, for example, out of bound accesses
result in nil and removing an element from a list is done by assigning nil to
its position. Both cases require Typed Lua’s type system to accept nil as a
valid element of all Lua lists (Maidl et al. 2015). Array elements in Typed Lua
are always nullable.

2.4
Ahead-of-time Compilers

In the previous chapter we discussed how just-in-time compilers have
been successfully used to improve the performance of dynamically typed
languages, although at a high cost in terms of implementation complexity. In
this context, it is natural to ask: what about ahead-of-time compilers? They
are the standard way to optimize typed languages, so why not apply the same
technique to dynamic languages as well? This is something that has been tried
many times. One example is Biggar’s phc compiler for PHP (Biggar 2010).
Biggar reported speedups between 1.5× and 2.5× compared to the reference
PHP interpreter. Meanwhile, the authors of HHVM, a JIT compiler for PHP,
reported larger speedups between 1.5× and 10× compared to the reference
interpreter (Adams et al. 2014). While the two benchmark suites are not the
same, it is worth noting that there is a large difference in the maximum speedup
that was reported. This difference may be related to the inherent difficulty of
optimizing a dynamic language using an ahead-of-time compiler. Biggar has
said the following on this topic:

Conventional wisdom states that a compiled program should run
at least an order-of-magnitude faster than an interpreted program.
In our experience, however, dynamic scripting languages do not
follow this rule of thumb. Instead, a program written in a scripting
language spends most of its run-time handling dynamic features,
such as dynamic types and zvals. This limits the potential improve-
ment of simply removing the interpreter loop. This is particularly
important for a compiler like phc which reuses the PHP system,
as many of the code paths executed will be the same, whether the
program is interpreted or compiled. — (Biggar 2010)

A similar pattern can also be found in other languages and compilers.
Since our research with Pallene is tied to the Lua language, we bring attention

Chapter 2. Optimizing Scripting Languages 21

to the ahead-of-time compilers that have been written for Lua. We know of
two such compilers: lua2c (Manura 2008) and Lua Low Level (Ligneul 2016).

Lua2c converts Lua source code into an equivalent program written in C.
It does not perform any kind of type inference so the compiled program also
uses Lua objects and data strutures, which are manipulated from C using the
Lua-C API. The performance results are not great. Due to the overhead of the
Lua-C API, the compiled programs usually run slower than Lua, from 25% to
75% of the speed of the reference Lua interpreter (Manura 2008).

Lua Low Level (LLL) is a compiler that uses the LLVM framework
to translate Lua bytecode into executable machine code. Frequently called
functions are identified at run time and compiled into machine code by
converting each bytecode instruction into a block of LLVM IR in single-static-
assignment form (Ligneul 2016, Lattner 2002). Ligneul reported speedups
between 1.6× and 3× compared with the reference Lua interpreter. However,
this is still less than what can be achieved by a full JIT compiler. In the same
set of benchmarks, Ligneul reported that LuaJIT was between 6× and 15×
faster than the reference Lua interpreter.

While LLL is technically a just-in-time compiler, it behaves more like an
ahead-of-time compiler because its code generation does not depend on any
run-time information. However, the JIT-like behavior of compiling things at
run time makes it harder to study the performance of the resulting code, since
the measurements of running time will include both the code execution and the
compilation. To avoid this problem, we replicated the approach of LLL using
a more traditional ahead-of-time compiler, which we have named Lua-AOT.

Before we explain how Lua-AOT works in more detail, we must first
step back and talk about how the Lua interpreter operates. The reference
Lua interpreter is a bytecode interpreter for a register-based virtual machine,
written in C, as is illustrated by the simplified interpreter in Figure 2.3
(Ierusalimschy et al. 2005). Its core is a loop that fetches the next instruction
and then dispatches to the appropriate instruction handler, using a large
switch-case statement.

In a register-based interpreter, values are stored in an array of virtual
registers. These LuaValues are dynamically typed. They carry a type tag plus
the actual value, which may be an integer, a string, a table, or one of the other
possible Lua types.

The most common kind of instructions are basic data manipulation
operations such as arithmetic operations, table reads and writes, function
calls, etc. In a register-based interpreter the arguments for these operations
are virtual registers. For example, the instruction ADD(0,1,2) adds the Lua

Chapter 2. Optimizing Scripting Languages 22

void interpret (uint32_t bytecode [], LuaValue regs [])
{

int pc = 0;
while (1) {

uint32_t instr = bytecode [pc ++];
switch(opType(instr)) {

case ADD:
int i = opArg1(instr);
int j = opArg2(instr);
int k = opArg3(instr);
regs[i] = add(regs[j], regs[k]);
break;

case MUL:
int i = opArg1(instr);
int j = opArg2(instr);
int k = opArg3(instr);
regs[i] = mul(regs[j], regs[k]);
break;

case JMP:
pc += opArg1(instr);
break;

/*...*/
}

}
}

Figure 2.3: A simple bytecode interpreter for a register-based virtual machine.

values found in registers 1 and 2 and stores the result in register 0.
Another important kind of instructions are the control-flow instructions,

such as conditional and unconditional jumps. Inside the interpreter these
operations work by modifying the value of the virtual program counter. In
the example shown in Figure 2.3 this would be the pc variable.

Figures 2.4 and 2.5 exemplify the compilation of a Lua program into
bytecode. The Lua function in Figure 2.4 is compiled into the sequence of three
bytecode instructions shown in Figure 2.5. Each instruction is represented as a
32-bit integer: the first seven bits encode the operation type and the remaining
bits encode the operation arguments. The bytecode instruction set is at a lower
level of abstraction than the original Lua code. Local variables are identified by
virtual registers, with variables a, b, and c being mapped to virtual registers
0, 1, and 2, respectively. The loop is performed by the JMP -3, which tells the
interpreter to jump back by three instructions.

Chapter 2. Optimizing Scripting Languages 23

function f(a, b, c)
while true do

a = b + c
b = c * a

end
end

Figure 2.4: A small Lua program.

0 x02010020 // ADD 0 1 2
0 x000200a2 // MUL 1 2 0
0 x7ffffd36 // JMP -3

Figure 2.5: The simple Lua program, compiled to bytecode.

int main ()
{

LuaValue regs [256];
L0:

regs [0] = add(regs [1], regs [2]); // ADD 0 1 2
regs [1] = mul(regs [2], regs [0]); // MUL 1 2 0
goto L0; // JMP -3

}

Figure 2.6: The simple Lua program, compiled to C using the same technique
as Lua-AOT.

Now we can return to Lua-AOT. The basic idea behind LLL and Lua-
AOT is to compile each bytecode instruction into a block of code, as illustrated
in Figure 2.6. The main difference between them is that Lua-AOT compiles
everything ahead of time. The other main difference is that LLL uses LLVM as
a backend while Lua-AOT generates C source code. This use of C helps remove
the LLVM factor from the equation: the code generated by Lua-AOT is more
similar to the C code from the original Lua interpreter. The generated C code is
based on the instruction handler for the instruction, except that the arguments
are specified as compile-time constants. Control flow instructions are converted
into labels and gotos. As Futamura observed, this kind of compilation can
be seen as partial evaluation of the bytecode interpreter combined with an
unrolling of the main interpreter loop (Futamura 1999).

The motivation behind compiling programs like this is to get rid of
the code for dispatching bytecode instructions. Furthermore, it also helps
the optimizer by presenting more opportunities for constant folding and by

Chapter 2. Optimizing Scripting Languages 24

exposing the control flow graph of the program. The main downsides are that
it is harder to load code at run time and that the resulting executable is larger,
as each 32-bit bytecode instruction may expand into several lines of C code.
In our example each instruction only expands to a single line of code but in a
real interpreter the instructions can be more complicated than that. Note that
this compilation strategy does not perform any type-guided optimization. The
resulting programs are still dynamically-typed, using the same add and mul
operations as before. Just as in the original interpreter, all values are tagged
objects of type LuaValue.

2.5
Performance Evaluation of Lua-AOT

To evaluate the performance of Lua-AOT we measured the execution
time of the compiled programs on a set of bencharks and compared the results
with the reference Lua interpreter and the LuaJIT just-in-time compiler.

The Fannkuch, Fasta, Mandelbrot, Nbody, and Spectral Norm problems
come from the popular Computer Language Benchmarks Game (Guoy 2013).
However we reimplemented these benchmarks using idiomatic Lua because
the code from the CLBG website uses many unnatural tricks, including eval-
based metaprogramming. The Queens benchmark comes from an existing Lua
benchmark suite and solves the famous N-queens puzzle. The Stream Sieve
benchmark computes prime numbers using lazy streams, and is adapted from
the Typed Racket benchmark suite (Takikawa et al. 2016).

We measured the running time of these benchmarks on a desktop com-
puter with a 3.10 GHz Intel Core i5-4440 processor and 8 GB of RAM, running
Fedora Linux. The interpreters and compilers used were the latest available at
the time of the experiment: 5.4.0-beta2 for the reference interpreter and 2.1.0-
beta3 for LuaJIT. The C compiler used was GCC 9.2. Each benchmark was
run 10 times. The results are summarized in Figures 2.7 and 2.8. Figure 2.7
lists the average time in seconds for each benchmark and implementation. Fig-
ure 2.8 further summarizes the results by presenting the average time for each
benchmark divided by the average time for the reference Lua interpreter. In
both tables, lower numbers are faster.

In this set of benchmarks, the Lua programs compiled with Lua-AOT
were faster than the regular Lua interpreter by a factor of 1.15× to 2.5×,
which is close to the speedups of up to 3× encountered by Lua Low Level.
In a head-to-head comparison, the speedup reported by LLL was slightly
higher. However, this comparison is obfuscated by the fact that the baseline
measurement is not the same. LLL uses Lua 5.3 while Lua-AOT uses Lua 5.4.

Chapter 2. Optimizing Scripting Languages 25

Benchmark Lua Lua-AOT LuaJIT

Fannkuch 3.22± 0.00 1.55± 0.00 0.55± 0.00
Fasta 4.33± 0.04 3.15± 0.06 0.82± 0.00
Mandelbrot 8.20± 0.01 3.32± 0.03 0.90± 0.00
Nbody 7.72± 0.55 4.88± 1.26 0.48± 0.00
Spectral Norm 2.21± 0.00 1.12± 0.08 0.17± 0.00
Queens 16.09± 0.08 9.47± 0.09 1.67± 0.01
Stream Sieve 2.67± 0.17 2.29± 0.01 0.47± 0.01

Figure 2.7: A comparison of the performance of Pallene with ahead-of-time
and just-in-time compilers for Lua. The notation N ±n represents an interval,
where N is the average time in seconds and n is the difference between the
average time and the maximum or minimum time.

Benchmark Lua-AOT LuaJIT

Fannkuch 0.48 0.17
Fasta 0.73 0.19
Mandelbrot 0.40 0.11
Nbody 0.63 0.06
Spectral Norm 0.51 0.08
Queens 0.59 0.10
Stream Sieve 0.86 0.18

Figure 2.8: The average time for each benchmark, divided by the average time
for the reference Lua implementation. Lower numbers are faster.

In our benchmark suite, we observed that Lua 5.4 was about 20% faster than
Lua 5.3 and this different baseline could reflect in a smaller speedup for the
compiler targeting Lua 5.4.

We can also compare Lua-AOT’s performance with that of LuaJIT, which
achieved speedups of up to 15×. This suggests that the performance gain from
replacing interpretation with compilation is not as impactful as the further
performance gain from replacing dynamically-typed code by type-specialized
code.

In addition to execution time we also measured the size of the resulting
executables and of the Lua bytecode, which are listed in Figure 2.9. The
AOT-compiled machine code was substantially larger than the equivalent Lua
bytecode, by a factor of 25× on average (using the geometric mean). This
larger size is partly due to constant overheads as is evidenced by the 3.7KB
executable that is generated when compiling an empty Lua file. However, most
of the size increase in the Lua-AOT executables is due to the larger code size
for the compiled functions.

In summary, Lua-AOT produced programs that were about twice as fast

Chapter 2. Optimizing Scripting Languages 26

Benchmark Lua Lua-AOT

Empty 0.1 3.7
Fannkuch 0.9 29.5
Fasta 1.8 43.4
Mandelbrot 0.9 24.5
Nbody 1.3 37.0
Spectral Norm 1.4 26.8
Queens 1.0 34.0
Stream Sieve 1.5 30.1

Figure 2.9: Size of the benchmark programs, in kilobytes. The Lua column
refers to the size of the bytecode, and the Lua-AOT column refers to the size
of the executable. The “Empty” row shows the resulting sizes when compiling
an empty file.

as Lua, albeit at the cost of larger code size. However, the overall speedup
was still far from the speedups achievable by a JIT compiler, which can be
more than 10×. One hypothesis to explain this is that Lua-AOT does not
perform type-driven optimizations. The code is dynamically typed and values
are represented in a tagged and boxed representation. Could we close the gap
if we gave the ahead-of-time compiler more type information to work with?
Would it be possible to achieve JIT-like performance without committing to
the complexity of a just-in-time compiler? In the following chapters we will
answer yes to both of these questions. We will introduce Pallene, a typed
dialect of Lua that we designed to give more opportunities for type-driven
optimization, and we will show that its performance is comparable to that of
a JIT compiler.

3
The Pallene Language

In this chapter, we discuss what led us to create the Pallene programming
language and how we designed it to achieve its goals of performance and
interoperability with Lua. We also describe the syntax and type system of
the language, as well as its semantics.

Our inspiration for Pallene came from the problem of high-performance
Lua programs. Over the years we have seen an increase in the number of appli-
cations that use Lua in performance-sensitive code paths, often in combination
with LuaJIT, an alternative just-in-time compiler for Lua (Pall 2005). For ex-
ample, the OpenResty framework embeds LuaJIT inside the nginx web server,
and enables the development of high-performance web applications written
mostly in Lua (Zhang 2011). However, problems related to the high complex-
ity and the difficulty of maintaining a just-in-time compiler such as LuaJIT
have emerged. LuaJIT has diverged from the reference PUC-Lua implementa-
tion, as certain language features introduced in PUC-Lua would not get added
to LuaJIT. Additionally, we observed that the complex performance landscape
of the JIT compiler led programmers to adopt unusual programming idioms
that eschewed language features deemed “too slow”.

With the insight that programmers are willing to restrict their use of
dynamic language features when performance matters, we have decided to
explore a return to the traditional scripting architecture through Pallene, a
system programming language that we have designed specifically to comple-
ment Lua. Since Pallene has static types, it can obtain good performance with
an ahead-of-time compiler, avoiding the complexities of just-in-time compila-
tion; and since it is designed specifically to be used with Lua, we hope Pallene
will be attractive in situations where using C would be too cumbersome.

Overall, our goals for Pallene are that it should be safe, predictably
efficient, seamlessly interoperable with Lua, and easy for Lua programmers to
learn. Furthermore, it should have a simple and maintainable implementation
that is as portable as Lua itself. Lua can run on a wide variety of architectures
from mainframes to embedded systems (Ierusalimschy et al. 2018), and we
would Pallene to do the same. To achieve these goals, we designed Pallene as
an ahead-of-time compiled, typed subset of Lua, which can directly manipulate

Chapter 3. The Pallene Language 28

function sum(xs: {float }): float
local s: float = 0.0
for i = 1, #xs do

s = s + xs[i]
end
return s

end

Figure 3.1: A Pallene function for adding up the numbers in a Lua array. It is
also a valid Lua program, except for the type annotations, which start with a
colon.

Lua data structures, which shares Lua’s runtime and garbage collector, and
which uses run-time tag checks to enforce type safety. In this section, we
describe how these design choices accomplish our goals, and how all of them
play a part in enabling good performance.

Pallene is a subset of Lua Inspired by optional and gradual typing, Pallene
is very close to a typed subset of Lua. For example, the Pallene program
for computing the sum of an array of floating-point numbers that is shown
in Figure 3.1 is also a valid Lua program, except for the type annotations.
Furthermore, the behavior of Pallene programs is the same as that of Lua,
except that Pallene may raise a run-time type error if it receives a value from
Lua that does not have the expected type. This syntactical and semantical
similarity enables the seamless interoperability between Lua and Pallene, and
also makes Pallene easier for Lua programmers to learn.

Incidentally, this similarity also means that when it is desired to speed
up a Lua module it should be easier to rewrite it in Pallene than it would be to
rewrite it in a wholly different system language like C. That said, this transition
might not be a simple matter of inserting type annotations, since Pallene’s type
system is designed for performance first and is not flexible enough for many
common Lua idioms. This sets Pallene apart from gradual type systems such
as Typed Lua (Maidl et al. 2015). Typed Lua’s type system is designed to
accommodate a wide variety of Lua programs but this flexibility also means
that it is not able to offer better performance than plain Lua.

Pallene is typed, and uses tag checking to enforce type safety One of
the major sources of performance for Pallene when compared to Lua is that
Pallene programs are annotated with types and that the compiler uses this
type information to generate efficient, type-specialized code. However, there
are many situations where Pallene will manipulate values that originate from

Chapter 3. The Pallene Language 29

Lua, in which case it must introduce a run-time type check to ensure that the
value has the declared type. These run-time type checks inspect the type tags
that are already present in dynamically-typed Lua values. As we will show
in Section 3.5, the overhead of this tag checking is modest and is more than
compensated by the substantial performance gains from type specialization.

Pallene shares the runtime and garbage collector with Lua Pallene
offers first-class support for manipulating Lua objects and data structures
that adhere to its type system. Not only can Pallene programs use objects
such as Lua arrays, but Pallene modules also share the same runtime and
garbage collector as Lua. This is in contrast to other system languages, which
are only able to indirectly manipulate Lua values through the Lua–C API
(Ierusalimschy et al. 2011). As we will show in Section 3.5, bypassing the
traditional Lua–C API in this manner can significantly improve performance.

Pallene is compiled ahead-of-time The presence of static type information
in Pallene programs allows it to be implemented with a straightforward ahead-
of-time compiler, which is simpler than a JIT1.

Guided by the type annotations, Pallene’s compiler can produce efficient
and type-specialized code that is much faster than the Lua equivalent. This
type specialization is similar to the one that JIT compilers perform with their
run-time guards, but simpler to implement. Since a failed tag check in Pallene
is a run-time type error, Pallene does not need to worry about deoptimizing
speculatively-optimized code. There is also no need for a separate interpreter
or a warm-up profiling phase.

The Pallene compiler generates C source code and uses a conventional
C compiler as a backend. This is simple to implement and is also useful for
portability. The generated C code for a Pallene module is standard C code
that uses the same headers and system calls that the reference Lua interpreter
does. This means that Pallene code should be portable to any platforms where
Lua itself can run. Ensuring this portability would have been more challenging
if we had to implement our own compiler backend or if we had pursued a
JIT-compilation strategy.

1Using lines of code as a proxy for code complexity, Pallene’s compiler contains only 8
000 lines of Lua and C code while LuaJIT contains over 135000 lines of C and assembly
language.

Chapter 3. The Pallene Language 30

3.1
Syntax

As Pallene is intentionally not attempting to innovate through novel type
system or language semantics, the point we want to emphasize is that the main
difference between Pallene and Lua—and what sets them apart as system
and scripting languages, respectively—is the presence of a type system which
restricts what language features and idioms can be used.

In the interest of brevity, we limit this description of Pallene to the parts
that concern primitive operations, arrays, and records, which are sufficient
to demonstrate the behavior of Pallene’s run-time type checks, to highlight
the cooperation with the Lua runtime system, and to run initial performance
experiments. To simplify the presentation, we assume that variable declarations
always carry a type annotation. The full version of Pallene uses a form of
bidirectional type inference to infer the types of most local variables.

A Pallene module consists of a sequence of function definitions, which
are to be exported to Lua. The language syntax is summarized in Figure 3.2.
It is essentially the same as Lua’s syntax except for the requirement that
variables and functions must be typed, and that language features incompatible
with the type system cannot be expressed. We will list these features when
describing the type system. For brevity, we omit some primitive operators
(e.g. bitwise operators), as well as syntactical niceties like optional semicolons.
A complete manual for Pallene including those features can be found online
on https://github.com/pallene-lang/pallene.

The syntax should be familiar to those who have previously programmed
in a statically typed imperative language and should be immediately recogniz-
able by Lua programmers. A prefixed ‘#’ is the length operator and an infixed
‘..’ is string concatenation. For clarity, we represent the empty statement as
nop.

Curly braces are used both for arrays and records, following the notation
used by Lua’s table constructors. A {} expression means an empty array. To
avoid a syntactical ambiguity between empty arrays and empty records, empty
record types are not allowed.

3.2
Type System

Pallene’s type system is a conventional imperative-language type system,
extended with a dynamic type called any. Figure 3.3 describes the typing rules
for expressions and Figure 3.4 does the same for statements. Figure 3.5 lists
the types for primitive operators.

https://github.com/pallene-lang/pallene

Chapter 3. The Pallene Language 31

τ := Types
nil | boolean | integer | primitive types
float | string

| {τ} array type
| { l : τ } record type
| τ → τ function type
| any dynamic type

e := Expressions
| nil nil literal
| true | false boolean literals
| int integer literals
| flt floating-point literals
| str string literals
| { ei } array constructor
| { l = e } record constructor
| x variable
| op1 e unary operations
| e op2 e binary operations
| e[e] array-read
| e.l record-read
| e(e) function call
| e as τ type cast

op1 := - | not | # Unary Operators
op2 := + | - | * | / | .. | and | or | == | < | > Binary Operators

stmt := Statements
nop empty statement

| stmt ; stmt sequence
| while e do stmt end while loop
| for x = e, e do stmt end for loop
| if e then stmt else stmt end conditional
| local x:τ = e; stmt variable declaration
| x = e assignment
| e[e] = e array-write
| e.l = e record-write
| e(e) function call
| return e function return

fun :=
function f (x:τ):τ

stmt
end

Function Defn.

prog := fun Pallene Module

Figure 3.2: Abstract syntax for Pallene. It is a subset of Lua, but with added
type annotations, and the restriction that the toplevel must consist of a
sequence of function definitions.

Chapter 3. The Pallene Language 32

Γ ` nil : nil Γ ` true : boolean Γ ` false : boolean

Γ ` int : integer Γ ` flt : float Γ ` str : string

Γ ` e : τ
Γ ` { e } : {τ}

Γ ` e : τ
Γ ` { l = e } : { l : τ }

Γ ` e : τ1

Γ ` (e as τ2) : τ2

(x : τ) ∈ Γ
Γ ` x : τ

Γ ` e : τ1 optype1(op1, τ1) = τ

Γ ` (op1 e) : τ

Γ ` e1 : τ1 Γ ` e2 : τ2 optype2(op1, τ1, τ2) = τ

Γ ` (e1 op2 e) : τ

Γ ` e1 : {τ} Γ ` e2 : integer
Γ ` e1[e2] : τ

Γ ` e : { l : τ }
Γ ` e.li : τi

Γ ` e : τ → τ ′ Γ ` e : τ
Γ ` e(e) : τ ′

Figure 3.3: Pallene typing rules for expressions. Γ ` e : τ means that expression
e has type τ under the environment Γ.

Variables of type any can hold any Lua value. Under the hood they are
just tagged Lua values, which is the internal representation of values in the
Lua runtime. Upcasting to any is always allowed, as is downcasting from any
to another type. Downcasts are checked at run time (and we explain how in
Chapter 5). This kind of variable must be present in Pallene to implement
values that come from Lua, before they are tag checked. Exposing this feature
to the programmer is a simple way to improve interoperation with Lua. It also
adds flexibility to the type system, since this dynamic typing can be used to
emulate unions and parametric polymorphism. This is similar to the role that
the Object type played in Java before version 5, which introduced generics
(Bracha et al. 1998).

Restrictions of Pallene’s type system

The Pallene type system is not particularly innovative. The interesting
discussion concerns which Lua features and idioms the type system can and
cannot express, as this is what fundamentally positions Pallene as a system
language instead of as a scripting one. In this section we list some examples
of these more dynamic features or idioms that are present in Lua but not in

Chapter 3. The Pallene Language 33

Γ ` nop
Γ ` stmt1 Γ ` stmt2

Γ ` stmt1 ; stmt2

Γ ` e : boolean Γ ` stmt
Γ ` while e do stmt end

Γ ` e1 : integer Γ ` e2 : integer Γ, x : integer ` stmt
Γ ` for x = e1, e2 do stmt end

Γ ` e : boolean Γ ` stmt1 Γ ` stmt2
Γ ` if e then stmt1 else stmt2 end

Γ ` e : τ Γ, x : τ ` stmt
Γ ` local x : τ = e ; stmt

(x : τ) ∈ Γ Γ ` e : τ
Γ ` x = e

Γ ` e1[e2] : τ Γ ` e3 : τ
Γ ` e1[e2] = e3

Γ ` e1.l : τ Γ ` e2 : τ
Γ ` e1.l = e2

Γ ` f(e) : nil
Γ ` f(e)

Γ , (f : τ → τ ′) , (x : τ) , ($ret : τ ′) ` stmt

Γ `
function f (x:τ):τ ′

stmt
end

Γ ` e : τ ($ret : τ) ∈ Γ
Γ ` return e

Figure 3.4: Pallene typing rules for statements and functions. Γ ` stmt
means that the statement stmt is well-typed under the environment Γ. The
special entry $ret in the environment corresponds to the return type for the
surrounding function. $ret is not a valid Pallene identifier, and only appears
in these typing rules.

Pallene.

Polymorphic functions Pallene does not include type system features such as
subtype polymorphism or parametric polymorphism. If this kind of flexibility
is needed, the any type is the escape hatch that is available.

Optional parameters If a Lua function is called with less arguments than
it expects, the missing arguments are set to nil. The conditional operator or
can be used to assign a default value, as illustrated in Figure 3.6. In Pallene
this idiom is not supported because functions have a fixed arity and the or
operator only accepts boolean operands.

Multiple return values Lua functions may return multiple values and in
some cases such as the unpack function the number of returned values may

Chapter 3. The Pallene Language 34

optype1

op1 operand result

- integer integer
- float float
not boolean boolean
{τ} integer
string integer

optype2

op2
first

operand
second
operand result

+ - * / integer integer integer
+ - * / integer float float
+ - * / float integer float
+ - * / float float float
.. string string string
and or boolean boolean boolean
< == > boolean boolean boolean
< == > integer integer boolean
< == > integer float boolean
< == > float integer boolean
< == > float float boolean
< == > string string boolean

Figure 3.5: Typing relations for primitive operators. Arithmetic operators work
on either integers or floating point numbers. The logic operators like and, or
and not operate on booleans. Comparison operators work on non-nil primitive
types.

even vary depending on what arguments the function received. In Pallene,
the number of return values has to be fixed at compile time. In the version
of the language we describe here all functions must return a single value. In
the development branch of the language we are currently adding support for
multiple return values but still restricted to a fixed number of return values.

Dynamic arguments to primitive operators Primitive operators such as +
or - may receive arguments of any type in Lua. For example, string arguments
are coerced to numbers. These operators can also be overloaded using Lua’s
metamethod feature (Ierusalimschy et al. 2020), in which case the primitive
operator will call the appropriate metamethod function. In Pallene, this kind
of dynamism is not allowed and the arguments to operators such as + or -
must be numbers. This is because if an operator can potentially call a Lua
function, then this possibility may impair many compiler optimizations, even
if the function never ends up being called.

Coroutines Lua has a powerful coroutine library which can be
used for asynchronous programming or cooperative parallelism
(Moura & Ierusalimschy, 2009). Adding support for coroutines would involve
adding rules to the type system for yielding and awaiting from coroutines.
However, the biggest challenge is an implementation one. Pallene is com-

Chapter 3. The Pallene Language 35

function greet(name)
name = name or "world"
return "Hello " .. name

end

print(greet("friend"))
print(greet ())

Figure 3.6: This Lua program cannot be directly converted to Pallene by just
adding type annotations. Pallene functions must have fixed arity, and the typed
version of the or operator would reject the string operands.

piled to C and, just like C extension modules, it is not possible to yield
across a Pallene stack frame. We think that there are two possible ways
to work around this. The first would be to use a technique similar to the
CoCo library (Pall 2004). The other possibility would be to compile Pallene
functions using continuation-passing style, which is the more portable way
to allow yielding across C stack frames in Lua. Splitting functions into a set
of mutually-recursive callbacks would have a performance cost, therefore this
would probably have to be an optional feature that is not active for every
function.

Tables One of the more substantial restriction imposed by Pallene concerns
tables. The Lua table is a versatile datatype that maps arbitrary keys to
arbitrary values, and is the building block for most data structures in Lua.
Two particular use-cases are arrays and records. Arrays in Lua are just tables
with integer keys, and records are tables with string keys that are known at
compile time. Pallene supports these use cases with its array and record types.
However, Pallene is not able to describe other uses of tables, such as associative
arrays.

3.3
Semantics

To be compatible with Lua and to be familiar to Lua programmers, we
have kept Pallene’s semantics as close as possible to a strict subset of Lua.
As a guiding principle, we try to follow the Gradual Guarantee of Siek et al.
(Siek et al. 2015), which dictates that removing the type annotations from a
Pallene program and running it as a Lua module should produce the same
result, except that Pallene may raise run-time type errors that Lua would not.

When Pallene manipulates values that come from Lua, it must use run-
time type checks to ensure that the types are the ones it expects. For example,

Chapter 3. The Pallene Language 36

-- Pallene Code:
function add(x: float , y:float): float

return x + y
end

-- Lua Code:
local big = 1 << 54
print(add(big , 1) == big)

Figure 3.7: An example illustrating why Pallene raises an error instead of
automatically coercing integer numbers to float. If Pallene silently converted
integer function parameters to float, this function would produce a different
result than the equivalent Lua code that does not have any type annotations.

let’s consider again the list-summing function from Figure 3.1. When Lua calls
this function, it may pass it an ill-typed value that is not an array, or an array
with the wrong type of element. To protect itself against this possibility, Pallene
checks if xs is actually an array before reading from it, and checks if xs[i] is
a floating-point number before the floating-point addition in s = s + xs[i].
That said, we do not specify exactly when these run-time checks should occur.
The main purpose of Pallene’s type system is performance and this flexibility
gives the compiler the freedom to move these type checks around the code and
lift them out of loops. For instance, in the previously-mentioned example the
type of xs would be checked before the loop, and the type of xs[i] would be
checked as needed inside the loop. This sort of delayed or “superficial” checking
is the norm for non-primitive types in Pallene. Pallene is type safe in the same
way that a dynamically typed language is type safe: untrapped type errors and
segfaults never happen, but trapped type errors are commonplace.

So far, keeping Pallene’s semantics similar to a subset of Lua’s semantics
is mostly a matter of not allowing the type annotations to affect behavior
(other than run-time type checking, of course). For instance, Pallene does not
perform automatic coercions between numeric types when assigning values
or calling functions, unlike most statically typed languages. To illustrate,
consider the example in Figure 3.7. In Lua, as in many dynamic languages, the
addition of two integers produces an integer while the addition of two floating-
point numbers produces another floating point number. If we remove the type
annotations from the Pallene function add, and treat it as Lua code, Lua will
perform an integer addition and the program will print false. On the other
hand, were Pallene to automatically coerce the integer arguments to match
the floating-point type annotations, the program would have printed true.
Pallene would have performed a floating-point addition and, since floating-

Chapter 3. The Pallene Language 37

point numbers cannot accurately represent 254+1, it would be rounded down to
254. To avoid this inconsistency, Pallene does not perform automatic coercions
between float and integer, when assigning a value. It instead complains that
an integer was used where a floating-point value was expected.

Although Pallene’s type annotations never introduce coercions between
integers and floating point numbers, it is still possible to perform arithmetic
operations on integer and floating point numbers—the result is a floating
point number, just like it would be in Lua. For example, 1 + 2.0 evaluates
to 3.0. This is because the arithmetic operators are overloaded to accept
any combination of integer and floating point parameters, as is indicated
by the tables in Figure 3.5. This subtle distinction is specially relevant for
the comparison operators. When comparing an integer and a floating point
number, Lua and Pallene use accurate algorithms that always return the
correct result. They do not silently convert the integer to a floating point
number, because that is a lossy conversion when large integers are involved.

3.4
Implementation

Our implementation of the Pallene compiler and runtime was driven
by our goals of efficiency, seamless interoperation with Lua, simplicity, and
portability. The compiler itself is quite conventional. After a standard parsing
step, it converts the program to a high-level intermediate form and from that
it emits C code, which is then fed into a C compiler such as GCC. The final
executable complies with Lua’s Application Binary Interface (ABI) and can
be imported by Lua programs as a standard extension module.

The choice of C as a backend allowed us to simplify various aspects of the
Pallene compiler. Firstly, we could rely on a mature compiler for machine code
generation, register allocation, and several optimizations. Secondly, we could
take advantage of the fact that the reference Lua interpreter is also written
in C. Pallene shares many of its data structures and semantics with Lua, and
by also using C we could include in our generated code many C snippets and
macros lifted directly from the Lua interpreter source code.

The C backend is also useful for portability. Any platform that can run
the Lua interpreter should also be able to run Pallene modules, since the
generated C code for a Pallene module is standard C code that is similar to
the code that is present in the reference Lua interpreter.

From the point of view of performance, the most important characteristic
of Pallene is that it is typed. For instance, when we write xs[i] in Pallene
(as in our running example from Figure 3.1), the compiler knows that xs is an

Chapter 3. The Pallene Language 38

array and i is an integer, and generates code accordingly. The equivalent array
access in Lua (or in C code using the Lua–C API) would need to account for
the possibility that xs or i could have different types or even that xs might
actually be an array-like object with an __index metamethod overloading the
[] operator.

Also important for performance is how Pallene directly manipulates
private fields of Lua data structures and of the Lua runtime. Regular C
extension modules for Lua must interact with Lua data structures through
the Lua–C API (Ierusalimschy et al. 2011). The high-level stack-based design
of this API is backwards compatible, and allows the Lua garbage collector to
accurately keep track of live objects.2 However, it necessarily introduces some
overhead to the interaction between C and Lua. By bypassing the usual Lua–
C API, Pallene can achieve better performance, as we show in Section 3.5.
It is important to remember that Pallene can do this without sacrificing
memory safety or garbage collection. The compiler is careful to generate code
that respects the various invariants of the Lua runtime. For example, Pallene
ensures that whenever the garbage collector is invoked, all pointers to garbage-
collectable Lua objects are rooted in the Lua stack, where the garbage collector
can see them. Between runs of the garbage collector, some pointers might
only be stored in local C variables. These safety measures can be enforced
by Pallene’s compiler, but enforcing them in hand-written C code would be a
nightmare.

3.5
Performance Validation of Pallene

In this section, we perform experiments to evaluate the following assump-
tions and hypothesis about Pallene:

1. Pallene’s performance is comparable with that of a good JIT compiler,
despite its much simpler implementation.

2. Rewriting parts of a Lua program in C does not always improve perfor-
mance.

3. The cost of run-time tag checking in Pallene is small and is more than
compensated by gains due to type specialization.

We selected six micro benchmarks for this evaluation. All are array-
focused benchmarks that have been commonly used by the Lua community.

2Lua’s stack-based API contrasts with the lower-level C APIs of languages such as Python
and Ruby, which offer fewer guarantees to the programmer. In Python the programmer is
tasked with keeping track of object reference counts for memory management, and in Ruby
the garbage collector is conservative regarding pointers held by the C stack.

Chapter 3. The Pallene Language 39

They are based on known algorithms, and implemented in a straightforward
manner, without any performance tuning for a particular implementation.

Matmul: multiplies two matrices represented as arrays of arrays.

Binsearch: performs a binary search over an array of integers.

Sieve: produces a list of primes using the sieve of Eratosthenes.

Queens: solves the classic eight-queens puzzle.

Conway: a cellular automaton for Conway’s Game of Life.

Centroid: computes the centroid (average) of a list of points, which are
represented arrays of length 2.

For the main experiment, we ran each benchmark in five ways: Lua,
LuaJIT, Lua–C API, Pallene and C. Lua means the standard Lua interpreter,
version 5.4-work2. For LuaJIT we ran the same source code under the 2.1.0-
beta3 version of the compiler. For Lua–C API we rewrote the benchmark code
in C, but operating on standard Lua data structures through the Lua–C API.
Pallene means our implementation, running Pallene programs that are similar
to the Lua ones, except for the type annotations. To provide a familiar baseline,
we also implemented the benchmarks in C, using C data structures.

We executed our experiments in a workstation with a 3.10 GHz Intel
Core i5-4440 CPU, with 8 GB of RAM. The operating system was Fedora
Linux, and our C compiler was GCC 8.2. For each benchmark implementation
we performed forty measurements of the total wall-clock running time. To
maximize the percentage of time spent running the benchmarks (as opposed
to initializing them), we calibrated our benchmarks so each took at least
one second to run. The Matmul, Queens, and Conway benchmarks feature
algorithms with super-linear time complexity, so we simply increased the
input size until it was large enough. For the Binsearch, Sieve, and Centroid
benchmarks, we repeated the benchmark inside a loop to achieve the same
effect. All the measurements we list are for total running time, including the
ones for LuaJIT. In this set of benchmarks we observed that the LuaJIT
warm-up time was negligible so we did not calculate separate warm-up and
peak performance times, as is customarily done when evaluating just-in-time
compilers.

Figure 3.8 shows the elapsed time for each benchmark. The bars represent
the median running time for each benchmark, normalized by the Lua running
time. The vertical lines represent a 90% confidence interval: the range of
normalized running times encountered, excluding the 5% slowest and fastest

Chapter 3. The Pallene Language 40

0.2

0.4

0.6

0.8

1.0

1.2

Binsearch Centroid Conway Matmul Queen Sieve

Benchmark

T
im

e
(n

or
m

al
iz

ed
)

Implementation Lua 5.4 Lua−C API LuaJIT 2.1 Pallene C

Figure 3.8: Comparison of performance between, Lua, the Lua–C API, LuaJIT,
Pallene, and idiomatic C. Times are normalized by the Lua result. Lower is
better. Lines represent 90% confidence intervals.

Benchmark Lua Lua–C
API LuaJIT Pallene Palene

No Check C

Binsearch 11.05 3.63 4.74 1.43 1.40 0.54
Centroid 18.62 24.73 2.64 3.67 3.44 1.03
Conway 4.44 3.90 4.97 2.41 2.37 0.93
Matmul 20.15 25.00 1.88 3.61 3.64 1.58
Queen 14.30 3.90 1.65 1.31 1.30 0.72
Sieve 11.22 10.72 2.65 3.14 3.02 0.84

Figure 3.9: Median running times for our benchmarks, in seconds. Pallene No
Check is a memory-unsafe configuration of Pallene that skips run-time tag
checks, which we created for this experiment.

results. Most results cluster near the median, with the exception of a small
number of slower outliers. The exact times in seconds are summarized in
Figure 3.9.

In these tests, Pallene running times are comparable with LuaJIT, at
around half the speed of idiomatic C. The fact that it can achieve results
comparable with a mature optimizing compiler suggests that Pallene may be
suitable as system language for writing lower-level modules for Lua, at least
in terms of performance.

The Lua–C running times were all over the place. For Matmul and
Centroid, benchmarks with more operations on Lua arrays, the Lua–C API
overhead outweighs the gains from using C instead of Lua. This is because the
Lua–C API operations for manipulating a Lua array have to push and pop
values from the Lua stack and also check if all the type tags are correct.

Let us now analyze the Pallene versus LuaJIT situation in more detail.

Chapter 3. The Pallene Language 41

N M Time
ratio

Pallene
time

LuaJIT
time

Pallene
LLC miss

LuaJIT
LLC miss

100 1024 1.02 1.46 1.44 0.25% 0.26%
200 128 1.15 1.46 1.28 15.83% 2.26%
400 16 1.86 2.74 1.48 49.59% 37.34%
800 2 1.90 2.86 1.51 48.83% 38.81%

Figure 3.10: Median running time and cache misses for the Matmul benchmark
on different input sizes. N is the size of the input matrices. M is how many
times we repeated the multiplication. Time ratio is Pallene time divided by
LuaJIT time. Times are in seconds. Last Level Cache (LLC) load misses are a
percentage of all LL-cache hits.

The only benchmark where LuaJIT is substantially faster than Pallene is
Matmul. We have found that this difference is due to memory access. LuaJIT
uses the NaN-boxing technique to pack arbitrary Lua values and their type
tags inside a single IEEE-754 floating-point number (Pall 2009). In particular,
this means that in LuaJIT an array of floating-point numbers consumes only
8 bytes per number, against the 16 bytes used by Lua and Pallene. This results
in a higher cache miss rate and worse performance for Pallene. To confirm
that this is the case, we also ran this benchmark under smaller values of N,
measuring running times and cache-miss rates using the Linux perf tool. The
results are summarized in Figure 3.10. For smaller values of N, the matrices
always fit inside the machine cache and Pallene and LuaJIT are just as fast. For
larger N, LuaJIT’s more compact data representation leads to less cache misses
and better performance. This NaN-boxing effect also explains the difference
between LuaJIT and Pallene in the Centroid benchmark.

The NaN-boxing technique, however, is accompanied by other problems
that usually do not show up in benchmarks. For example, NaN tagging is
incompatible with unboxed 64-bit integers, which is one of reasons why this
technique is not used in the standard Lua interpreter anymore.

The Binsearch benchmark highlights a particularly bad scenario for trace-
based JITs, such as LuaJIT. The inner loop of the binary search features a
highly unpredictable branch, forking the hot path. This is not an issue for
Pallene and other ahead-of-time compilers.

The Sieve and Queens benchmarks need no further explanation as the
results were quite expected. Both LuaJIT and Pallene are around ten times
faster than Lua.

The Conway benchmark results are surprising because LuaJIT performed
worse than standard Lua. This unusual result is due to the new generational
garbage collector introduced in Lua 5.4. It turns out that the bulk of the time

Chapter 3. The Pallene Language 42

0.2

0.4

0.6

0.8

1.0

1.2

Binsearch Centroid Conway Matmul Queen Sieve

Benchmark

T
im

e
(n

or
m

al
iz

ed
)

Implementation No Check Pallene

Figure 3.11: Pallene run-time tag checking overhead. Times are normalized by
the No Check result. Lower is better. Lines represent 90% confidence intervals.

in this benchmark is spent doing string manipulation and garbage collection
and LuaJIT still relies on the incremental garbage collector that was used until
version 5.3. In a separate experiment, we disabled the generational mode of the
5.4 garbage collector and its performance slowed down to become comparable
to LuaJIT’s. This difference highlights that JIT compilation is not a panacea
and that sometimes other aspects can dominate the execution time.

The cost of run-time tag checks

We also investigated the effect of run-time tag checking in our imple-
mentation of Pallene arrays. Since Pallene arrays can be directly modified by
untyped Lua code, Pallene must perform a run-time tag check whenever it
reads from an array slot that might have been written by untyped code. In
this experiment we ran our benchmark suite under both the default Pallene
compiler and No Check, an unsafe version of Pallene that skips all the run-
time tag checks. Figure 3.11 shows the results of this experiment, normalized
against the No Check implementation. The exact times are also summarized
in Figure 3.9.

In all our benchmarks, the tag checks next to the array reads introduce
only little overhead, ranging from 0% to 10%, which we consider surprisingly
low. Many of our benchmarks perform run-time checks inside their innermost
loops, and this kind of run-time tag checking often introduces greater overheads
in other languages. For example, Reticulated Python also checks types when
accessing lists and object fields, but in their case the average slowdown was by
a factor of 2.5x (Vitousek et al. 2017).

To understand why our tag checks were cheaper than expected, we again
resorted to Linux’s perf tool. The extreme case of the Matmul benchmark
is particularly illuminating. It had a 0% tag-checking overhead despite the
presence of multiple run-time tag checks for the array reads in its innermost
loop. In Figure 3.12 we show the Instructions per Cycle statistics for the

Chapter 3. The Pallene Language 43

Implementation Time Cycles Instructions Intructions
per Cycle

Pallene 2.86 9.36× 109 16.68× 109 1.78
Pallene No Check 2.86 9.34× 109 7.46× 109 0.80

Figure 3.12: Run-time tag checks correspond to more than half of the x86-64
instructions executed in the Matmul benchmark. However, they do not impact
the total running time, due to the Intel Core i5’s instruction-level parallelism.
Times in seconds, N = 800, M = 2.

Matmul that we collected with perf. Although the tag checks accounted for
more than half of the machine-level instructions that were executed, the final
running time is still the same with or without them. This happens because
the Matmul benchmark is memory bound, as indicated by the low (≤ 1.0)
Instructions per Cycle statistic for Pallene No Check. This gives plenty of
room for the pipelining in the Intel Core CPU to execute the extra tag-checking
instructions in parallel, effectively for free.

In our other benchmarks we observed a similar pipelining benefit, albeit
less pronounced than in Matmul. Naturally, the run-time overhead of tag
checking may be higher for CPU-bound benchmarks, or if the benchmark is
run on other kinds of CPUs. Nevertheless, these results suggest that run-time
tag checking is not incompatible with efficient typed code, specially if the tag
checks are ultimately compiled down to machine-level jumps (as opposed to
source-level conditional statements, or bytecode-level jumps).

3.6
Related Work

In this section we review how Pallene compares to related work in type
systems and optimization for dynamic languages.

Typed Lua (Maidl et al. 2015) is a gradual type system for Lua. Its types
can be used for documentation and compile-time error detection. Typed Lua
aims to be flexible enough to type a wide variety of Lua programs and has a
rich set of table types to model the many different uses of Lua tables. Similarly
to TypeScript (Bierman et al. 2014), Typed Lua is intentionally unsound,
meaning its types cannot be used for program optimization. They are erased
before the program runs, and have no effect at run time.

Common Lisp is another language that has used optional type annota-
tions to provide better performance. As said by Paul Graham in his ANSI
Common Lisp Book (Graham 1995), “Lisp is really two languages: a language
for writing fast programs and a language for writing programs fast”. Pallene

Chapter 3. The Pallene Language 44

and Common Lisp differ in how their sub-languages are connected. In Common
Lisp, they live together under the Lisp umbrella, while in Lua and Pallene they
are segregated, under the assumption that modules can be written in different
languages. Common Lisp also has an option to unsafely disable run-time tag
checks.

RPython (Ancona 2007, Bolz et al. 2009, PyPy 2016) is a restricted sub-
set of Python which can be compiled to efficient machine code, either through
ahead-of-time compilation (to C source code) or just-in-time compilation
(through the PyJitPl JIT). Unlike Pallene, RPython does not have explicit
type annotations, and is not defined by a syntax-directed type system. The
types are inferred by a whole-program flow-based analysis that uses a graph of
live Python objects as starting point. Finally, one very important difference is
that Pallene modules can be independently-compiled, and called from Lua code
running in an unmodified version of the reference Lua interpreter. RPython-
based executables, on the other hand, must be built as a single compilation
unit. Compiled RPython modules are also incompatible with CPython, the
reference Python interpreter.

Cython (Behnel et al. 2010) is an extension of Python with C datatypes.
It is well suited for interfacing with C libraries and for numerical computation,
but its type system cannot describe Python types. Cython is unable to provide
large speedups for programs that spend most of their time operating on Python
data structures.

Terra (DeVito 2014) is a low-level system language that is embedded
in and meta-programmed by Lua. Similarly to Pallene, Terra is also focused
on performance and has a syntax that is very similar to Lua, to make the
combination of the two languages more pleasant to use. However, while Pallene
uses Lua as a scripting language, Terra uses it as stage-programming tool. The
Terra system uses Lua to generate Terra programs aimed at high-performance
numerical computation and, once produced, these programs run independently
of Lua. Terra uses manual memory management and features low-level C-like
datatypes. There are no language features to aid in interacting with a scripting
language at run time.

4
Pallene and the Performance of Gradually Typed Languages

Our initial performance results with Pallene were encouraging. In the
comparison with LuaJIT, Pallene’s performance was in the same ballpark
as the mature just-in-time compiler, despite Pallene having a vastly simpler
implementation. This was possible due to Pallene’s choice of restricting the
language to a typed subset of Lua. In the comparison with C, pure C code
was the fastest, but C code that made heavy use of Lua data structures was
slower than Pallene and sometimes even slower than Lua. This suggested that
the effort to minimize the overhead of the interface between Lua and Pallene
was worthwhile.

After the encouraging initial results we turned our attention to studying
what aspects of Pallene’s design contributed to its good performance, and
whether those lessons could be applied to other languages as well. Of particular
interest to us was the problem of performance for gradually typed languages. In
the context of gradual typing, pathological performance when mixing the typed
and untyped code is the norm. In some gradually typed languages, programs
that combine typed modules with untyped modules can be much slower than
entirely untyped programs (Takikawa et al. 2016, Vitousek et al. 2014).

The conventional wisdom states that this bad performance is due to
the overhead of run-time type checking, caused by the run-time checks the
typed language uses to safely interoperate with the untyped language. How-
ever, just-in-time compilers also make extensive use of run-time type checks,
without running into those performance problems. In fact, type guards are a
fundamental part of their optimization strategy.

In most gradually typed languages, the compiler uses the untyped
language as a compilation target, unlike Pallene’s compiler, which ultimately
compiles down to machine code. We hypothesized that this might be the
reason why run-time type checks are costly in many gradually typed languages.
Reusing the existing implementation for the untyped language is a natural
direction to take when implementing a gradually typed language based on an
existing untyped language. However, a type check that takes the form of an
if-statement or function-call in the untyped language might be slower than a
type check that is compiled down to a single CPU branch instruction.

Chapter 4. Pallene and the Performance of Gradually Typed Languages 46

In this chapter we promote Pallene as an example of a performant
gradually typed language, which avoids some performance pitfalls encountered
by other gradually typed languages. We show that adding types (converting
Lua to Pallene) often improves the overall performance, and never harms it. We
also discuss how aspects of Pallene’s design may be applied to other languages.
This material is based on a paper authored with Roberto Ierusalimschy which
has been submitted to the Journal of Functional Programming, and as of
April/2020 is still undergoing peer review.

4.1
Performance Challenges for Gradually Typed Languages

Initial research on gradual typing focused on developing the theory of
how to combine static and dynamic typing in a single language. However,
once gradual typing was implemented in practice the problem of performance
was soon brought to attention. Takikawa et al. were some of the first to
raise the alarm, after noticing that run-time type checking in Typed Racket
could lead to overheads of over 100x compared to dynamically typed programs
(Takikawa et al. 2016). Since then, there has been much research on the topic
of gradual typing performance.

Often, run-time type checks are seen as an inevitable source of over-
head, a price to pay for type soundness. For example, Greenman and Felleisen
found that in a version of Typed Racket with first-order casts, the over-
head of type checking grows linearly with the number of type annotations
(Greenman & Felleisen, 2018). Some research has focused on trying to mini-
mize the overhead of type checking. For instance Campora et al. suggest an
algorithm for estimating the cost of run-time type checking, and Vitousek et
al. propose an algorithm to elide redundant type checks in Reticulated Python
(Campora et al., Vitousek et al. 2019).

One promising research avenue for improving the performance of gradu-
ally typed languages has been to use JIT compilers. For example, Bauman et
al. show that the Pycket JIT compiler obtains better performance for Typed
Racket benchmarks (Bauman et al. 2015). Richards et al. show that run-type
type checking may sometimes be subsumed by type tests that a JIT com-
piler would already normally perform as a part of its optimization strategy
(Richards et al. 2017).

Another avenue is that if the gradually typed language is designed from
scratch, instead of being based on an existing dynamic language, then it might
be possible to obtain better performance. One such example would be the Nom
language from Muehlboeck and Tate (Muehlboeck & Tate 2017), which uses

Chapter 4. Pallene and the Performance of Gradually Typed Languages 47

nominal typing pervasively to reduce the overhead of run-time type checking.
In this thesis and in previous papers we have introduced Pallene, a typed

subset of Lua designed to act as a system-language counterpart to Lua’s script-
ing (Gualandi & Ierusalimschy 2020). Pallene is implemented by an ahead-of-
time compiler, which uses the type annotations present in the program to
generate efficient machine code. This code can be dynamically-loaded by Lua,
in a similar manner to C extension modules. In this chapter we discuss how
the combination of Lua and Pallene can be seen as a gradually typed language,
with a transient type-checking semantics similar to that of Reticulated Python
(Vitousek et al. 2014). Our goal is to show that implementing an efficient grad-
ually typed language based on an existing dynamic language is possible not
only in theory, but also in practice. We want to bring attention to three ideas
that have guided the design of Pallene.

The first idea is that compile-time type information can bring substantial
performance gains if the implementation is designed to take advantage of it,
and that these gains can be much larger than the overhead of run-time type
checking. Types can be seen as a source of performance, not only as a source
of overhead.

The second idea is that in the context of a gradually typed language,
a simpler ahead-of-time compiler may be able to achieve results that are
comparable with a more complex just-in-time compiler. JIT compilers optimize
the program based on type information collected at run time. Since these
optimizations are speculative, they need to be able to deoptimize the program
state if the actual types encountered are not what was initially predicted. Some
of the most complex parts of a JIT are related to this type profiling and these
deoptimizations, but both of these problems are avoided in a language with
explicit type annotations.

The third and final observation is that some of the largest performance
gains happen when the compiler is able to specialize the generated code for
its types. This has led us to focus the design of Pallene around the parts
of Lua where the performance benefits the most from type annotations. One
result of this is that Pallene is a typed subset of Lua, instead of a superset. In
Pallene, a dynamically typed value of type any must be explicitly downcasted
to a concrete type before it can be used. While by some definitions this would
dismiss Pallene as not being a gradually typed language, we argue that we
should always look at the combination of Lua+Pallene as a whole, since Pallene
is always intended to be used side-by-side with Lua.

The rest of this chapter is organized as follows: Section 4.2 discusses the
use of just-in-time compilers for dynamic languages, and how those lessons

Chapter 4. Pallene and the Performance of Gradually Typed Languages 48

can be applied to gradually typed languages. As an example, we analyze the
performance of LuaJIT, a JIT compiler for Lua. Section 4.3 discusses how
gradual typing can allow an ahead-of-time compiler to be competitive with
a JIT compiler, while keeping the implementation much simpler. Section 4.4
contains experiments evaluating the overhead of migrating programs from Lua
to Pallene. These experiments indicate that migrating from Lua to Pallene
usually leads to better performance, for all possible combinations of Lua and
Pallene modules. Furthermore, Section 4.5 discusses how Pallene is intended
to always be used side-by-side with Lua, and how this allowed us to simplify
its implementation.

4.2
JIT Compilers for Dynamic Languages

The fastest implementations of dynamically typed languages tend to be
based on just-in-time compilation. Despite the name, JIT compilers for dy-
namic languages usually include both an interpreter and a compiler. Programs
start being executed in the interpreter, which identifies which commonly ex-
ecuted sections of the code are candidates for compilation. Then, these hot
sections are instrumented to collect type information. Finally, this type infor-
mation is used to generate efficient machine code. Since the type information
is collected at run time, there is no guarantee that the interpreter will correctly
identify the full set of types that will flow through that section of the program.
For this reason, the compiler also introduces type guards in the compiled code,
to exit the compiled code if an unexpected type is encountered. This is called
deoptimization. It can be complex to implement, and it may be costly at run
time. For example, if the compiled code stores local variables in machine reg-
isters and the machine stack, the deoptimization will need to convert those
values back into the virtual stack used by the interpreter. Furthermore, if the
compiled code contained inlined functions, this deoptimization may also need
to reconstruct the call stack.

Just-in-time compilation is capable of large speedups. This can be seen
in the experiments we made with LuaJIT in previous chapters. In Section 2.5,
LuaJIT achieved a speedup between 5× and 20× compared to Lua and in
Section 3.5 we observed speedups of up to 10×.

We draw a connection between JIT compilation and gradual typing as
follows. The machine code that the JIT compiler produces is derived from a
typed version of the program, with types that were speculatively inferred by
the interpreter. This generated code also contains run-time type checks, in
the form of deoptimization checks. In the JIT compiler these checks are there

Chapter 4. Pallene and the Performance of Gradually Typed Languages 49

because the type inference is imprecise, but they serve the same purpose of the
type checks that are present in gradually typed programs—they detect when
the compiled (typed) part of the program receives a value with an unexpected
type from the interpreted (untyped) part. Since JIT compilers are able to
obtain excellent performance even in the presence of these type checks, this
suggests that gradually typed programs also ought to be able to do the same,
if the type checks are implemented in a similar manner to JIT deoptimization
checks. We have confirmed this hypothesis with Pallene, which we will talk
more about in Section 4.3. We believe that this may also be applicable to other
gradually typed languages that employ a first-order type checking approach,
as categorized by Greenman and Felleisen (Greenman & Felleisen, 2018).

Furthermore, it is known among the JIT community that deoptimization
checks account for only a small percentage of the resulting program’s running
time. For example, Southern and Renau have measured that in the context of
the V8 compiler for JavaScript the deoptimization checks account for less than
3% of the total program running time (Southern & Renau 2016). This adds
support to the idea that type checks do not have to be expensive, as long as
they happen in compiled machine code, and focus on checking the type tags
(constructors) of objects, without involving wrapper objects to represent con-
tracts. We have previously observed a similar result in Pallene, where the over-
head of type checks is often less than 10% (Gualandi & Ierusalimschy 2020).
This has also been noted by Kuhlenschmidt et al., which observed that
the overhead of type checking was lower in a gradually typed lambda cal-
culus that was compiled to machine code with an ahead-of-time compiler
(Kuhlenschmidt et al. 2019).

Another way in which JIT compilation is relevant for gradual typing
is that there have been studies applying JIT compilation to gradual typing.
One common approach for implementing gradual typing is that the compiler
for the typed language uses the dynamic language as the target language for
code generation. Type checks become if statements, or are encapsulated in
contract objects. In this setting it is natural to examine the effect of using
JIT compilation to optimize the resulting program. For example, Bauman et
al, reported that the Pycket compiler was able to reduce the overhead of type
checking in Typed Racket by over 90% (Bauman et al. 2015).

While JIT compilation has a high ceiling in terms of performance,
implementing an efficient JIT from scratch is a daunting task. For these
reasons, JITs do not always implement all language features in a compatible
manner. For example, LuaJIT is only fully compatible with Lua 5.1, with no
plans in the foreseeable future to make it fully compatible with Lua 5.4. The

Chapter 4. Pallene and the Performance of Gradually Typed Languages 50

PyPy implementation for Python was only made compatible with Python 3
after many years and a significant effort (PyPy 2011). Furthermore, JIT
compilers often depend on low-level machine code, which is not portable.
For these reasons, we chose to investigate ahead-of-time compilation when
designing Pallene.

4.3
Adding Types

In Chapter 3 we introduced Pallene, a typed variant of the Lua pro-
gramming language designed with performance in mind. Pallene modules are
compiled to machine code, in the form of a Lua extension module. These ex-
tension modules can be loaded by Lua in a similar manner to how an extension
module written in another static language like C would be. The difference is
that, as a typed variant of Lua, Pallene has been designed from the start to
facilitate this interaction with Lua, and to reduce the run-time overhead of
this interaction.

To recall what a Pallene program looks like, consider the example
program in Figure 4.1. It implements the core part of the Nbody benchmark.
Syntactically, this program is identical to its Lua equivalent, except for the
declaration of the Body record type and the type annotations for function
parameters and return types. Pallene infers the types for local variables, which
rarely need type annotations. For example, dx is inferred to be of type float.
It should be stressed that in Pallene, the absence of a type annotation does
not mean that the variable has the dynamic type any.

When it comes to semantics, Pallene programs behave the same as
Lua, except that they may raise run-time type errors that Lua would have
not. In general terms, its type-checking strategy is similar to the “tran-
sient” type checking of Reticulated Python (Vitousek et al. 2014), or the
first-order type checking approach described by Greenman and Felleisen
(Greenman & Felleisen, 2018). We provide more details of this in Chapter 5.
The most important aspect is that type checks in Pallene always take the form
of type-tag checks, which run in constant time. For example, a single tag check
can verify that a value is a function but not what kind of function it is. Type
casts also do not introduce any wrappers or proxy objects. This is both for
performance and to preserve object identity.

The Pallene compiler is careful to always check the types of dynamically
typed values before they are used. It is committed to being as safe as Lua, in
the sense that Pallene programs never segfault or access memory in a way they
should not. Pallene checks the type of values that come from Lua arrays or Lua

Chapter 4. Pallene and the Performance of Gradually Typed Languages 51

type Body = {
x: float , y: float , z: float ,
vx: float , vy: float , vz: float ,
mass: float

}

function update_speeds (bi: Body , bj: Body , dt: float)
local dx = bi.x - bj.x
local dy = bi.y - bj.y
local dz = bi.z - bj.z
local dist = math.sqrt(dx*dx + dy*dy + dz*dz)
local mag = dt / (dist * dist * dist)

local bjm = bj.mass * mag
bi.vx = bi.vx - (dx * bjm)
bi.vy = bi.vy - (dy * bjm)
bi.vz = bi.vz - (dz * bjm)
local bim = bi.mass * mag
bj.vx = bj.vx + (dx * bim)
bj.vy = bj.vy + (dy * bim)
bj.vz = bj.vz + (dz * bim)

end

function update_position (bi: Body , dt: float)
bi.x = bi.x + dt * bi.vx
bi.y = bi.y + dt * bi.vy
bi.z = bi.z + dt * bi.vz

end

function advance (nsteps : integer ,
bodies : {Body}, dt: float)

local n = # bodies
for _ = 1, nsteps do

for i = 1, n do
local bi = bodies [i]
for j = i+1, n do

local bj = bodies [j]
update_speeds (bi , bj , dt)

end
end
for i = 1, n do

local bi = bodies [i]
update_position (bi , dt)

end
end

end

Figure 4.1: An example Pallene program, implementing the inner loop of the
Nbody benchmark. The syntax is the same as the equivalent Lua program, but
with added type annotations.

Chapter 4. Pallene and the Performance of Gradually Typed Languages 52

records. Function arguments are checked when Lua calls a Pallene function,
and return types are checked when Pallene calls a Lua function. Type checking
can also happen when Pallene calls an unknown function, in the context of
a higher-order function. When that happens, both the caller and the callee
assume that the other side may be untyped.

Pallene was designed for performance, and one fundamental part of
that is that its compiler generates efficient machine code. To simplify the
implementation, and for portability, Pallene generates C source code instead of
directly generating assembly language. This is similar to the approach that we
used for Lua-AOT in Section 2.4, except that Pallene generates more efficient,
type-specialized code. For example, while Lua-AOT stores all variables in the
virtual Lua stack, Pallene stores values with primitive types like integers
in C local variables. This allows them to be stored in CPU registers at
run time. Another optimization is that Pallene uses a more efficient calling
convention when calling statically-known Pallene functions. The default Lua
calling convention passes all arguments and return values on the Lua stack.
Meanwhile, the optimized Pallene calling convention uses regular C function
parameters and return values, which allows most of the arguments and return
values to be passed via CPU registers.

4.4
Program Migration Performance Experiments for Pallene

We evaluated the performance of combining Lua and Pallene us-
ing the standard performance lattice analysis for gradual typing systems
(Takikawa et al. 2016). For this experiment we adapted four benchmarks from
the set of benchmarks we used in Section 2.5: Spectral Norm, Nbody, Queens,
and Stream Sieve. These were the benchmarks from that set which contained
several functions and which therefore could be split into more than one mod-
ule. Each benchmark program was refactored to use two or three modules,
each with a single function or a single group of mutually-recursive functions.
We created two versions of each module: one untyped, in Lua, and one typed,
in Pallene. We then analyzed the running time of all 2N combinations of Lua
and Pallene modules. The results are shown in Figure 4.2 and Figure 4.3. For
each benchmark, there is a lattice of program configurations with pure Lua at
the bottom, and pure Pallene at the top. Black ovals correspond to Pallene
modules. White ovals are Lua, running on the reference interpreter. Gray ovals
are also Lua, but using the Lua-AOT compiler. The number shown under each
configuration is the running time, normalized by the time of the pure Lua
configuration. Lower numbers are faster.

Chapter 4. Pallene and the Performance of Gradually Typed Languages 53

0.40

0.52 0.58 0.74

0.68 0.87 0.87

1.00
4.2(a): Spectral Norm

0.15

0.21 0.27 0.83

0.32 0.88 0.94

1.00
4.2(b): Queens

0.21

0.29 0.30 0.86

0.38 0.88 0.92

1.00
4.2(c): Nbody

0.79

0.92 0.90

1.00
4.2(d): Stream Sieve

Figure 4.2: Performance lattice for combinations of Pallene and interpreted
Lua modules. Dark ovals represent (typed) Pallene modules and white ovals
represent (untyped) Lua modules, running on the Lua 5.4 interpreter. The
running times for each benchmark are normalized by the running time of
the pure Lua configuration. Lower numbers are faster. In all configurations,
moving from untyped to typed always speeds up the program and there are
no pathological cases.

A concrete example might help explain the lattices. Consider the case of
the Nbody benchmark. In preparation for this experiment, we refactored the
code from Figure 4.1 so that each of the three functions was put in a separate
module. In the performance lattice shown in Figure 4.2(c), the three ovals
correspond to advance, update_position, and update_speeds, respectively.
For instance, in the configuration denoted by the black oval means that the
advance function is implemented in Pallene, and the two white ovals mean
that the update_position and update_speeds functions are implemented in
Lua.

In the lattice of configurations we can move from one configuration to
another by changing one module at a time from Lua to Pallene or vice-versa.
For example, we can go from to by changing the implementation of the
first module from Lua to Pallene. In this set of benchmarks, for every possible
configuration, converting a module from Lua to Pallene never degraded the
performance. Adding types always made the programs go faster, or at least
had no effect on performance. When comparing Pallene with interpreted Lua,

Chapter 4. Pallene and the Performance of Gradually Typed Languages 54

0.81

0.83 0.84 0.96

0.84 0.99 0.98

1.00
4.3(a): Spectral Norm

0.25

0.26 0.40 0.84

0.41 0.85 0.99

1.00
4.3(b): Queens

0.34

0.39 0.42 0.86

0.46 0.92 0.91

1.00
4.3(c): Nbody

0.90

0.97 0.97

1.00
4.3(d): Stream Sieve

Figure 4.3: Performance lattice for combinations of Pallene and Lua, this time
with the Lua modules being compiled by an ahead-of-time compiler (Lua-
AOT). Black ovals are Pallene, and gray ovals are Lua-AOT. As in Figure 4.2,
lower numbers are faster. In some configurations, performance was unchanged
by adding types. However, just as before, there were no configurations where
adding types slowed down the program.

the more typed configurations were always faster.
To get a better idea of how much of the performance gain from Pallene is

due to typing or due to ahead-of-time compilation we repeated the experiments
but using the Lua-AOT compiler from Section 2.4 as the baseline. This time,
some transitions showed no performance benefit from adding types. This
suggests that in those cases, the performance gain from Pallene was from
avoiding the interpreter, not from the types. Nevertheless, even in this case
there were no configurations where adding types caused the program to go
slower. This departs from typical results for other gradually typed languages,
where it is expected that some partially-typed configurations will be slower,
sometimes by a large amount.

Astute readers might notice that the speedups for the full-Pallene con-
figurations in the lattices are not as large as the ones we saw in Section 3.5.
This can be seen more clearly in Figures 4.4 and 4.5, which show Pallene’s per-
formance on the single-module versions of these benchmarks. The normalized
running time for the full-Pallene configuration in the multi-module benchmarks
(0.40, 0.15, 0.21, and 0.79) are all slower than the corresponding running times

Chapter 4. Pallene and the Performance of Gradually Typed Languages 55

Benchmark Lua Lua-AOT LuaJIT Pallene

Nbody 7.72± 0.55 4.88± 1.26 0.48± 0.00 1.10± 0.01
Spectral Norm 2.21± 0.00 1.12± 0.08 0.17± 0.00 0.17± 0.00
Queens 16.09± 0.08 9.47± 0.09 1.67± 0.01 1.32± 0.01
Stream Sieve 2.67± 0.17 2.29± 0.01 0.47± 0.01 1.73± 0.02

Figure 4.4: Running times for the single-module versions of the benchmarks
used for the lattice experiments. The notation N ± n represents an interval,
where N is the average time in seconds and n is the difference between the
average time and the maximum or minimum time.

Benchmark Lua-AOT LuaJIT Pallene

Nbody 0.63 0.06 0.14
Spectral Norm 0.51 0.08 0.08
Queens 0.59 0.10 0.08
Stream Sieve 0.86 0.18 0.65

Figure 4.5: Normalized times for the single-module versions of the benchmarks.
Each number is the average running time for that benchmark divided by the
running time for the reference Lua interpreter. Lower numbers are faster.

in the single-module versions of the benchmarks (0.08, 0.08, 0.14, and 0.65).
We believe that the main explanation for this performance difference is due to
function calling conventions. Pallene uses a more efficient calling convention
when directly calling other Pallene functions within the same module and a
slower calling convention when calling functions from a different module. Cross-
module function calls use the same calling convention used when Pallene calls
a Lua function, which involves passing the arguments via the Lua stack. Since
the benchmarks in the lattice experiment feature many cross-module function
calls, precisely to test the communication and type checking overhead between
Lua and Pallene, this difference in calling convention can be significant. We are
currently investigating how to use the more efficient Pallene calling convention
for cross-module function calls as well.

4.5
Focusing the Design of Pallene

Our main goal for Pallene was to design a language with good perfor-
mance, aimed at the Lua ecosystem. Additionally, we also had the goals of
keeping the type system simple and of keeping the implementation portable
and maintainable. Gradual typing helped us to achieve both of them.

Firstly, the types help optimize the programs. Furthermore, they allow
the implementation to be a simple ahead-of-time compiler instead of a more

Chapter 4. Pallene and the Performance of Gradually Typed Languages 56

-- Not allowed !

function dynplus (x: any , y: any): any
return x + y

end

function dyncall (f: any , x: any): any
return f(x)

end

-- OK

function plus(x: any , y: any): any
return ((x as integer) + (y as integer)) as any

end

function call(f: any , x: any): any
return (f as any ->any)(x)

end

Figure 4.6: In Pallene, values of type any must be converted to a numeric type
before they can be used in arithmetic. Similarly, dynamically typed values
must be casted to a function type to be called as a function.

complex JIT. There is no need to collect type information at run time, and
the implementation does not need to worry about deoptimizing after a failed
type check, since failed type checks raise errors instead.

However, Pallene’s good performance is only possible because of its spe-
cialized implementation, which is inherently more complex than the approach
of using Lua as a target language. This led us to focus the design of Pallene
around the features where the type annotations allow for improved perfor-
mance.

In particular, Pallene has some restrictions about what operations are
allowed for dynamically typed values (Gualandi & Ierusalimschy 2020). Dy-
namically typed values of type any are first-class: they can be assigned to
variables, passed as arguments to functions, etc. However, the only primitive
operation that can be used on them is downcasting to a different type. For
instance, they must be converted to a numeric type (integer or float) before
being used in arithmetic, as exemplified in Figure 4.6. Similarly, they must be
cast to a function type before they can be called as a function.

The motivation for this restriction comes from our experiments with Lua-
AOT. For these dynamically-typed operations, Pallene would only be able to
offer a modest performance improvement when compared with Lua. So instead

Chapter 4. Pallene and the Performance of Gradually Typed Languages 57

of duplicating the implementation of these features in Pallene, we encourage
the programmer to use Lua instead.

Pallene has some other minor restriction as well. For example, functions
may not be redefined (monkey-patching). This is seldom used in the kind of
programs that would benefit most from Pallene’s performance.

The interplay between Lua and Pallene is fundamental. Our intention is
that performance-sensitive modules may be written in Pallene, but the rest
can remain in Lua. Pallene is therefore intended to play to the strengths of
the classic scripting architecture (Ousterhout 1998), with Lua playing the role
of scripting language and Pallene playing the role of system language. From
this point of view, Pallene’s objective is not to supersede Lua, but to provide a
more Lua-compatible alternative to other typed languages such as C or C++.

This brings us to the question of whether Pallene can be classified as a
gradually typed language or not. One definition we can use for that would be
the Refined Criteria for Gradual typing from Siek et al. (Siek et al. 2015). That
definition lists three criteria for determining whether a language is gradually
typed: 1) it should encompass both fully-typed programs and fully-untyped
programs; 2) It should be as sound as the dynamic language, with no untrapped
errors; 3) It should provide the gradual guarantee, which states that type
annotations do not affect the evaluation of the program, except perhaps by
introducing run-time type errors.

Pallene fits the second and third criteria, as we discussed in more detail in
our previous work (Gualandi & Ierusalimschy 2020), but it does not fit the first
one because it is not a superset of Lua. However, Pallene is always intended to
be used in combination with Lua and never as a standalone language. Viewed
as a whole, the combination of both languages fits all three criteria, since the
union of Lua plus Pallene is trivially a superset of Lua.

4.6
Summary

In this chapter, we showed that ahead-of-time compilation can be a
pragmatic approach for producing an efficient gradually typed language, based
on an existing dynamic language. We use the example of Pallene, a typed
gradually-variant of Lua, designed with performance in mind.

To support our arguments, we have presented two experiments. The first
was the evaluation of the impact of ahead-of-time compilation for untyped
Lua programs. This evaluation found that picking the low-hanging fruit of
ahead-of-time compilation for Lua provided a speedup of at most 2.5×. It
hints that larger performance gains depend on being able to optimize based

Chapter 4. Pallene and the Performance of Gradually Typed Languages 58

on type information.
The second experiment evaluated the type-checking of Pallene, by com-

paring the performance of different combinations of Lua and Pallene modules.
We found that in the case of Lua and Pallene, adding types usually improves
performance and there were no instances where adding types degraded the
performance.

Our analysis brings attention to three ideas. The first is that if the
compiler uses types for optimization, the performance gains from adding types
can outweigh the cost of the run-time type checking necessary to support those
optimizations. When this happens, types are not a source of performance
overhead, but quite the opposite. This is specially true if the types allow
representing data in an unboxed form.

The second idea is that the optimizations performed by just-in-time
compilers for dynamic languages are in many cases similar to the optimizations
that an ahead-of-time compiler for a gradually typed language might be able
to perform. This raises the question of whether efficient gradual typing should
be possible not only for Lua, but also for other dynamic languages that are
known to benefit from just-in-time compilation.

The final idea is that when performance is the main goal, the compiler
for a gradually typed language does not necessarily need to implement a
superset of its untyped counterpart. If the typed and the untyped languages
are combined following the classic scripting approach, the type system and the
implementation of the typed language can focus on the parts of the design that
benefit the most from the added types.

5
A Pair of Semantics for Pallene

In the previous chapters we mentioned that Pallene uses run-time tag
checks to verify the types of values originating from Lua and that the behavior
of a Pallene program should be similar to the behavior of the Lua program
that is obtained by removing all the type annotations. However, we did not
formally specify what exactly this meant.

In this chapter we will address these questions by formalizing a restricted
subset of Pallene. We present λ-Dyn, λ-Pallene, and Pallene IR, three small
lambda-calculi that model the very simplified subsets of Lua and Pallene that
we study in this chapter.

To simplify the proofs and to focus on the matter of run-time tag
checking and data representation, we restrict our formalization to a purely-
functional subset of Pallene, in the same style as other lightweight calculi
such as Featherweight Java (Igarashi 2001). Our simplified version of Pallene
only has a handful of types: functions, integers, arrays, and nil. Functions are
fundamental to any lambda-calculus. The integer and nil types demonstrate
how Pallene deals with base types. The array type allows us to discuss how
Pallene implements arrays and records using Lua tables.

Language Typing Evaluation

λ-Dyn −→dyn
λ-Pallene Γ `pln e : τ
Palllene IR (PIR) Γ `pir e : τ −→pir

Figure 5.1: The languages described in this chapter

λ-Pallene PIR

λ-Dyn

early

late

erase erase

Figure 5.2: Transformations between the languages

Chapter 5. A Pair of Semantics for Pallene 60

Figure 5.1 summarizes the three languages that we discuss in this chapter.
λ-Dyn is an untyped calculus with a reduction relation −→dyn. λ-Pallene
is a typed language with a typing judgement `pln but without a reduction
relation. Following previous work on gradually typed languages, we specify
the semantics of λ-Pallene by first converting it to a lower-level intermediate
representation with explicit run-time type checks, called Pallene Intermediate
Representation (PIR). It features a type system, with typing judgment `pir,
as well as a reduction relation −→pir. To reduce visual noise, we may omit the
subscripts when the language we are referring to is unambiguous.

Figure 5.2 shows the ways to convert between these three languages.
The early-checking and late-checking transformations lead to two possible
semantics for λ-Pallene. The late-checking translation, discussed in Section 5.4,
produces a PIR program where all values are stored in a tagged and boxed
representation. These tags are checked at the last possible moment before
the value is used, similarly to a dynamically-typed language. Conversely, in
Section 5.5 we will show the early-checking translation, which checks the
type tags sooner, allowing more values to be represented in an unboxed and
untagged manner.

The translation to Pallene IR serves two main purposes. The first is
to model exactly when type checking happens at run time, by making the
run-time type-checking explicit. The second important purpose is to model
how values are represented at run time. Pallene is designed to interoperate
with Lua and the design of PIR reflects this. For example, Pallene arrays are
implemented as Lua tables and Pallene functions conform to the Lua function
calling convention. We will discuss this in further detail in Section 5.3.

5.1
λ-Dyn

The first part of our formalization of Pallene is λ-Dyn, a dynamically
typed language representing the very simplified subset of Lua that corresponds
to the subset of Pallene that we are formalizing. Figure 5.3 shows the syntax
of this language. It is a normal lambda calculus extended with integers, arrays,
and a unit type (nil). In the various diagrams, integer literals such as 0 and 1 are
represented by n. The notation for arrays and function calls are borrowed from
Lua: array constructors use curly braces, array indexing uses square brackets,
and function calls are written with the arguments in parentheses. Overlines
represent repetition; the array constructor expression may contain zero or more
sub-expressions.

Chapter 5. A Pair of Semantics for Pallene 61

e := Expressions
| nil nil literal
| n integer literal (0, 1, 2, . . .)
| e1 + e2 integer arithmetic
| { e } array constructor
| e1[e2] array read
| x variable
| e1(e2) function call
| λx. e untyped lambda

Figure 5.3: λ-Dyn syntax

λ-Dyn evaluation

v := Values
| nil nil value
| n integer value
| { v } array value
| λx. e lambda value

C := Eval. Contexts
| � hole
| C + e | v + C arithmetic
| { v C e } array constructor
| C[e] | v[C] array indexing
| C(e) | v(C) function call

Reduction relation e −→dyn e
′

(r-add) C
[
na + nb

]
−→ C

[
nc

]
, nc = na + nb

(r-index) C
[
{ v }[n]

]
−→ C

[
vn

]
, n ∈ keys({v})

(r-missingkey) C
[
{ v }[n]

]
−→ C

[
nil

]
, n /∈ keys({v})

(r-app) C
[
(λx.e)(v)

]
−→ C

[
e[x← v]

]

Figure 5.4: A small-step semantics for λ-Dyn

Chapter 5. A Pair of Semantics for Pallene 62

In Figure 5.4 we provide a small-step semantics for λ-Dyn. Values in
λ-Dyn are integers, arrays of values, lambdas, and the special nil value.
Evaluation happens one step at a time, as determined by the −→dyn relation.
As usual, the evaluation contexts C are expressions with a “hole” dictating
where reduction may occur. The evaluation proceeds in a call-by-value manner,
from left to right. In the definition of evaluation, beware that the monospaced
brackets in C[e] and v[C] are for array indexing, not for filling in the hole
in the context.

The −→dyn relation has four cases, corresponding to arithmetic, array
indexing and function calls. As in Lua, an out-of-bounds array read returns
the special value nil. There are no rules that generate a run-time error. The
evaluation gets stuck in erroneous programs such as attempting to call a table
as if it were a function. One of the reasons that we chose to leave this behavior
unspecified is that in Lua these operations are not always an error. For example,
if a Lua table implements the function call metamethod then Lua code may
call that table as if it were a function. This flexible and extensible behavior is
a hallmark of many dynamic programming languages.

Another choice that we made is that λ-Dyn is purely-functional, without
operations to mutate arrays or local variables. This is solely to simplify the
semantics and make the proofs easier to understand. In Section 5.7 we sketch
a way to extend our results to also work in the presence of mutable state.

5.2
λ-Pallene

The typed counterpart of λ-Dyn is λ-Pallene, whose syntax we show in
Figure 5.5. It is a typed language representing a subset of Pallene. Syntactically,
the main difference compared to λ-Dyn is that lambdas are typed with
mandatory type annotations and that there is a type cast operator, e as τ .

Figure 5.6 summarizes the type system of λ-Pallene. It is a simply-
typed lambda calculus extended with a dynamic type (any) and a type cast
operator inspired by gradual typing (Siek & Taha 2006). All Pallene values
can be converted to a value of type any using “as any”.

Type casts are restricted by a symmetric type-consistency relation ∼
that specifies which casts “make sense”. Two types are consistent if the only

Chapter 5. A Pair of Semantics for Pallene 63

e := Expressions
| nil nil literal
| n integer literal (0, 1, 2, . . .)
| e1 + e2 integer arithmetic
| { e } array constructor
| e1[e2] array read
| x variable
| e1(e2) function call
| λx:τ. e typed lambda
| e as τ type cast

τ := Types
| any dynamic type
| nil integer type
| int integer type
| {τ} array type
| τ → τ function type

Figure 5.5: λ-Pallene syntax

λ-Pallene types Γ `pln e : τ

(t-int)
Γ ` n : int

(t-cons)
Γ ` e : τ

Γ ` { e } : {τ}

(t-var)
x:τ ∈ Γ
Γ ` x : τ

(t-cast)
Γ ` e : τ τ ∼ τ ′

Γ ` e as τ ′ : τ ′

(t-nil)
Γ ` nil : nil

(t-add)
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

(t-index)
Γ ` e1 : {τ} Γ ` e2 : int

Γ ` e1[e2] : τ

(t-lambda)
Γ, x:τ ` e : τ ′

Γ ` (λx:τ.e) : τ → τ ′

(t-app)
Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1(e2) : τ ′

Type consistency τ1 ∼ τ2

(c-refl)
τ ∼ τ

(c-any-1)
τ ∼ any

(c-any-2)
any ∼ τ

(c-array)
τ ∼ τ ′

{τ} ∼ {τ ′}
(c-fun)

τ1 ∼ τ ′1 τ2 ∼ τ ′2
τ1 → τ2 ∼ τ ′1 → τ ′2

Figure 5.6: λ-Pallene type system

Chapter 5. A Pair of Semantics for Pallene 64

differences between them are parts that are any in one of the sides. For example:

int ∼ int

{any} ∼ {int}

any ∼ {int}

int→any ∼ any→int

int � nil

int→int � {any}

Dynamically typed values of type any can be passed and returned from
functions and can be stored in arrays of type {any}. However, they cannot
be directly used in primitive operations such as arithmetic. It is necessary to
explicitly downcast to the appropriate type first, using the as operator, as in
the following example:

(λx:any. 17 + (x as integer))(10 as any)

The integer 10 can be converted to the dynamic type with as any but then it
must be converted back to integer with as integer before it can be used by
the addition operator.

λ-Pallene is a subset of the full Pallene language described in Chapter 3,
except for the addition of lambda functions. Nested function expressions are
not currently implemented by the Pallene compiler but are a feature that we
would like to support in the future.

5.3
Pallene Intermediate Representation (PIR)

To describe the semantics of λ-Pallene we will use Pallene IR (PIR), a
lower level calculus that has explicit run-time tag checks. We will first describe
this low level calculus and then we will describe how to translate λ-Pallene to
it.

Two of the main objectives of PIR are to model how values are repre-
sented and to describe how types are checked at run time. To achieve this, PIR
introduces an explicit distinction between boxed and unboxed values, as well
as box and unbox operations to convert between them. The complete syntax
is shown in Figure 5.7.

PIR’s type system models the way that objects are represented in the
Lua runtime, particularly the way that boxed values carry a type tag. It also

Chapter 5. A Pair of Semantics for Pallene 65

e := Expressions
| nil nil literal
| n integer literal (0, 1, 2, . . .)
| e1 + e2 integer arithmetic
| { e } array constructor
| e1[e2] array read
| x variable
| e1(e2) function call
| λx:τ. e typed lambda
| boxG e upcast
| unboxG e downcast

τ := Types
| any dynamic type
| nil nil type
| int integer type
| {any} array of any
| τ → τ function type

G := Ground Types
| nil nil type
| int integer type
| {any} array of any
| any → any function of any

Figure 5.7: Pallene IR Syntax

reflects how arrays and functions are implemented as Lua arrays and functions,
which is a design choice we made to improve the interoperability with Lua.

In PIR, the type tags correspond to the subset of types identified as
ground types. The t-box rule in the type system mandates that only values
with a ground type may be stored inside a box. Values of other types can be
used by PIR but may not be directly exposed to Lua. In the case of functions,
this means that only functions of type any→any can be put inside a box.
These are the functions that receive and return boxed values, as the default
Lua calling convention does. Nevertheless, although there is special treatment
for the any→any type, regular function types of the form τ → τ ′ are still
allowed. This lets Pallene functions call other Pallene functions using a more
efficient calling convention, without the need to convert all the arguments to
any. Furthermore, as in other lambda calculi, the lambdas are also used to
represent local variables. Here, the types model how local variables are stored
at run time, which can matter for performance. For example, local variables
with unboxed types may potentially be stored in machine registers.

The PIR type system also treats arrays differently than λ-Pallene does.

Chapter 5. A Pair of Semantics for Pallene 66

PIR types Γ `pir e : τ

(t-int)
Γ ` n : int

(t-cons)
Γ ` e : any

Γ ` { e } : {any}

(t-box)
Γ ` e : G

Γ ` boxG e : any

(t-var)
x:τ ∈ Γ
Γ ` x : τ

(t-nil)
Γ ` nil : nil

(t-add)
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

(t-index)
Γ ` e1 : {any} Γ ` e2 : int

Γ ` e1[e2] : any

(t-unbox)
Γ ` e : any

Γ ` unboxG e : G

(t-lambda)
Γ, x:τ ` e : τ ′

Γ ` (λx:τ.e) : τ → τ ′

(t-app)
Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1(e2) : τ ′

Figure 5.8: Pallene IR type system

The only kind of array that the Lua runtime and garbage collector knows how
to work with are arrays of boxed objects, which are represented in PIR by the
type {any}. Other array types in λ-Pallene are all converted to arrays of any
in PIR, as we will show in more detail when we discuss the early-checking and
the late-checking translations from λ-Pallene to PIR.

We now turn our attention to the evaluation of PIR programs. In
Figure 5.9 we provide a small-step semantics for PIR, which is similar to
the small-step semantics of λ-Dyn. The differences are that each evaluation
step may now produce a run-time error, written panic; that the nil in the
r-missingkey case is now boxed; and that there are additional reduction
rules to describe the semantics of the box and unbox operations. The unbox
operation returns the value that is inside a box, after checking if its type tag
is the expected one. Note that the right hand side of the r-error rule does
not have an evaluation context C. If a tag-check error happens inside a sub-
expression, then the evaluation for the entire expression is interrupted, yielding
panic.

Soundness for PIR

In the context of PIR, soundness informally means that well-typed PIR
programs don’t get stuck. Their evaluation may “go wrong” if a run-time tag
check fails but it does not get stuck—getting stuck would indicate a memory
safety bug in λ-Pallene. More formally, we can specify this using the usual

Chapter 5. A Pair of Semantics for Pallene 67

PIR evaluation

v := Values
| nil nil value
| n integer value
| { v } array value
| λx:τ. e lambda value
| boxG v boxed value

C := Eval. Contexts
| � hole
| C + e | v + C arithmetic
| { v C e } array constructor
| C[e] | v[C] array indexing
| C(e) | v(C) function call
| boxG C upcast
| unboxG C downcast

r := Results
| e successful step
| panic run-time error

Reduction relation e −→pir r

(r-add) C
[
na + nb

]
−→ C

[
nc

]
, nc = na + nb

(r-index) C
[
{ v }[n]

]
−→ C

[
vn

]
, n ∈ keys({v})

(r-missingkey) C
[
{ v }[n]

]
−→ C

[
boxnil nil

]
, n /∈ keys({v})

(r-app) C
[
(λx:τ.e)(v)

]
−→ C

[
e[x← v]

]
(r-unbox) C

[
unboxG (boxG v)

]
−→ C

[
v

]
(r-error) C

[
unboxG1 (boxG2 v)

]
−→ panic, G1 6= G2

Figure 5.9: A small-step semantics for Pallene IR

Chapter 5. A Pair of Semantics for Pallene 68

technique of progress and preservation lemmas. Our proofs are based on the
proofs from Pierce’s Types and Programming Languages book, particularly
the proofs of progress and preservation for the simply typed lambda calculus
(Pierce 2002).

Lemma 5.1 (Canonical forms lemma for PIR).
– If v is a value of type nil then it is an integer literal n.

– If v is a value of type int then it is an integer literal n.

– If v is a value of type {any} then it is an array literal { v }

– If v is a value of type τ → τ ′ then it is has the form λx:τ.e

– If v is a value of type any then it has the form boxG v′

Proof. By a straightforward induction on the definition of value. The novel
case is the one for the any type. The only typing rules that can produce such
type are rules t-box, t-index, and t-app. However, only in the t-box case
the expression can be a value. Therefore, if a value has type any then it must
be a box expression.

Lemma 5.2 (Progress for PIR). If Γ `pir e : τ then either e is a value or it
can take a reduction step (e −→pir e

′ or e −→pir panic).

Proof. By induction on the typing derivations. The novel cases are the ones
for t-index, t-box and t-unbox.

– t-index: If either e1 or e2 is not a value, then the induction hypothesis
says that e1[e2] can take a step. If both are values, the canonical forms
lemma states that they must be an array value and an integer value,
respectively. Therefore, reduction can take place with either the r-index
rule or the r-missingkey rule.

– t-box: If e is not a value, then the induction hypothesis says that boxG e
can take a reduction step. Alternatively, if e is a value then boxG e is also
a value.

– t-unbox: If e is not a value, again the induction hypothesis says that
it is possible to make an evaluation step. Otherwise, if e is a value then
by the canonical forms lemma it must be a boxed value. The complete
expression will have the form unboxG1(boxG2 v). It can take a reduction
step either by rule r-unbox or by rule r-error, depending on whether
the type tags match or not.

Chapter 5. A Pair of Semantics for Pallene 69

Lemma 5.3 (Preservation for PIR). If Γ `pir e : τ and e −→pir e′ then
Γ `pir e

′ : τ

Proof. Again, the proof is by induction on the typing derivation and the
interesting cases are the ones for t-index, t-box and t-unbox.

– t-index: If e1[e2] is well-typed then it must have type any, e1 must have
type {any}, and e2 must have type integer. If e1 or e2 are not values
then the reduction step happens inside them and preservation follows
from the induction hypothesis. Otherwise, the reduction is either a r-
index or r-missingkey step, depending on whether the integer index
is in-bounds or out of bounds. In both cases the result has type any, as
required for preservation.

– t-box: If boxG e is well-typed we can say that it has type any and that
e has type G. Furthermore, the only possible reduction that can happen
is boxG e −→pir boxG e′. By the induction hypothesis we can deduce that
e′ also has type G and therefore that boxG e′ also has type any.

– t-unbox: As before, if unboxG e −→pir unboxG e′ then we apply the
induction hypothesis. The other possibilities are the r-error and
r-unbox rules. The r-error case can be ruled out by the e −→pir e

′

hypothesis because panic is not an expression. In the r-unbox case
we have unboxG(boxG v) −→pir v. The hypothesis that the left side is
well-typed tells us that both unboxG(boxG v) and v have type G and
therefore the type of the expression is preserved by the reduction step.

5.4
The Late-checking Translation

One way to convert λ-Pallene to PIR is to use a tagged and boxed
representation for all values and only check the tags when the value is about
to be used. This late-checking translation is shown in Figure 5.10. All type
annotations are ignored and the variables are converted to type any. The run-
time types are checked at the last possible moment: the PIR program will
check if the arguments of an arithmetic operation are really numbers, if the
function being called is really a function, and so on. This is similar to λ-Dyn,
except for one crucial difference. While in a dynamic language such as λ-Dyn
the type-checking happens “inside” primitive operations such as the addition
operator, in PIR this type checking happens in the unbox operation.

Chapter 5. A Pair of Semantics for Pallene 70

b τ c = any

b nil c = boxnil nil
b n c = boxint n
b e1 + e2 c = boxint ((unboxint be1c) + (unboxint be2c))
b { e } c = box{any} { bec }
b e1[e2] c = (unbox{any} be1c) [unboxint be2c]
b x c = x
b λx : τ.e c = boxany→any λx:any.bec
b e1(e2) c = (unboxany→any be1c) (be2c)
b e as τ c = bec

Figure 5.10: The late-checking conversion from λ-Pallene to PIR

We can show that under this late-checking translation, well-typed Pallene
programs are converted into well-typed PIR programs. Together with the pre-
vious theorem showing that PIR is sound, this implies that Pallene programs
compiled under the late-checking translation don’t get stuck at run time.

Theorem 5.4 (The late-checking translation produces well-typed programs).
If Γ `pln e : τ then bΓclate `pir beclate : any

Proof. By induction on the structure of the `pln typing judgment. We will
briefly present the reasoning behind each case.

– Integer literals and nils are immediately put into a box, which has type
any. Arithmetic operations unbox their arguments (with a tag check)
and then imediately put the resulting number back in a box.

– The arguments to the array literals are translated into expressions of
type any, which is precisely what the PIR array expects.

– The array read operation checks if the array is actually an array and if
the index is actually an integer. The result has type any because the PIR
array always has type {any}.

– Variable names are preserved but all the types are changed to any.

– All the lambdas are changed to have type any→any. This reflects how
in the late-checking translation all variables and expressions are mapped
to something of type any. The lambda itself is immediately boxed with
boxany→any, meaning that the overall result of translating a λ-Pallene
lambda is a PIR expression of type any.

– A function call checks whether the function is actually a function. Since
all functions are translated as a function of type any→any the result of
the function call will have type any. There are no type checks involving

Chapter 5. A Pair of Semantics for Pallene 71

the arguments or return values—those type checks will only happen when
those values are used in a primitive operation.

– Type casts in λ-Pallene are completely erased. The result is the transla-
tion of the inner expression, which will have type any.

Corollary 5.5 (Soundness for late-checking λ-Pallene). If Γ `pln e : τ then
the PIR term beclate does not get stuck.

Proof. Follows from the theorem the soundness for PIR (Lemmas 5.2 and 5.3)
and Theorem 5.4, which says that the late-checking translation produces well-
typed PIR terms.

5.5
The Early-checking Translation

One characteristic of the late-checking translation is that all the values
are represented in a tagged and boxed manner, which is bad for performance.
The early-checking translation goes in the opposite direction: it prefers to
store values in an unboxed manner when possible, anticipating the run-time
tag checks if necessary. The translation has three parts, which are shown in
Figure 5.11.

The first part of the translation maps λ-Pallene types to PIR types. Note
that all λ-Pallene types map to either a ground type or to any.

– banycearly is any

– bintcearly and bnilcearly are ground types.

– All array types are mapped to {any}, the only array type in PIR.

– All function types become any→ any, the only boxable function type.

The second part of the translation is the⇐ helper function for converting
betweeen two PIR types. It inserts a box or unbox where appropriate. The two
types must be either any or a ground type.

– A cast from any to any is compiled to a no-op.

– An upcast from a ground type to any becomes a box operation.

– A downcast from any to a ground type becomes an unbox operation.

– A cast from a ground type to itself is also compiled to a no-op.

– The conversion from a ground type to a different ground type is unde-
fined. However, the τ1 ∼ τ2 restriction ensures that this never happens.

Chapter 5. A Pair of Semantics for Pallene 72

b any c = any
b nil c = nil
b int c = int
b {τ} c = {any}
b τ1 → τ2 c = any → any

(any⇐ any) e = e
(any⇐ G) e = boxG e
(G⇐ any) e = unboxG e
(G⇐ G) e = e

b nil c = nil
b n c = n
b e1 + e2 c = be1c + be2c
b { e } : {τ} c = { (any⇐ bτc)bec }
b e1[e2] : τ c = (bτc ⇐ any) (be1c[be2c])
b x c = x
b λx : τ.e c = λx′:any. (any⇐ bτ ′c) ((λx:bτc.bec) ((bτc ⇐ any)x′))
b (e1 : τ → τ ′)(e2) c = (bτ ′c ⇐ any) (be1c((any⇐ bτc)be2c))
b (e : τ) as τ ′ c = (bτ ′c ⇐ bτc) bec

Figure 5.11: The early-checking conversion from λ-Pallene to PIR. We use
the notation e : τ to annotate the types of certain expressions. These type
annotations are not part of the syntax of λ-Pallene.

The third and final part of the translation are the translation rules for
expressions. Similarly to the late-checking translation, all arrays are imple-
mented as {any} because we want to implement Pallene arrays as Lua tables
and because we want to allow Pallene to use arrays created by Lua. However,
this time the array values are unboxed as soon as they are read from the ar-
ray instead of only when they are about to be used. Lambdas are converted
to typed lambdas, wrapped inside a lambda of type any → any. The inner
typed lambda allows the local variables to be represented unboxed while the
outer lambda allows the function itself to be boxed (and potentially exposed
to Lua). Finally, using a similar logic as before we can prove that the early-
checking translation converts well-typed λ-Pallene programs to well-typed PIR
programs.

Theorem 5.6 (The early-checking translation produces well-typed programs).
If Γ `pln e : τ then bΓcearly `pir becearly : bτcearly

Proof. By induction on the structure of the `pln typing judgement.

– Integer literals are converted into unboxed integers.

– The arguments to the integer arithmetic operation are unboxed integers
and it returns an unboxed integer.

Chapter 5. A Pair of Semantics for Pallene 73

– The array constructor casts the values to any before they are stored
in the array. Values that are not already boxed will be boxed by the
(any⇐ bτc) cast. Remember that in PIR the only array type is {any}.

– Conversely, values that are read from an array are immediately cast from
any to the appropriate type. If the λ-Pallene type of the array is {any}
then this will be an (any ⇐ any) cast which is a no-op. Otherwise, this
cast will unbox the value immediately after it is read from the array.

– λ-Pallene variables of type τ are compiled into variables of type bτc. If
the λ-Pallene type of the variable is any then it will be represented in a
boxed form, otherwise it will be represented in an unboxed form.

– A λ-Pallene lambda of type τ → τ ′ is converted into a PIR lambda of
type bτc → bτ ′c, wrapped inside another lambda of type any → any.
The wrapper lambda casts the input argument from any to bτc, passes
it to the inner lambda and then converts the result from bτ ′c to any.

– Function calls box the input argument and unbox the return value. This
is similar to how we box a value when storing it into an array and unbox
when reading from it.

– Type casts in λ-Pallene are converted to either a box, an unbox, or a
no-op, depending on the types. The τ ∼ τ ′ requirement in λ-Pallene’s
t-cast rule ensures that (bτ ′c ⇐ bτc) is well-defined.

Corollary 5.7 (Soundness for early-checking λ-Pallene). If Γ `pln e : τ then
the PIR term becearly does not get stuck.

Proof. Follows from the theorem the soundness for PIR (Lemmas 5.2 and 5.3)
and Theorem 5.6, which says that the early-checking translation produces well-
typed PIR terms.

One of the most interesting features of the early-checking translation is
that each lambda is translated to typed lambda wrapped inside an “untyped”
lambda of type any→any. The primary reason for this is to allow interoperabil-
ity with Lua. Only functions of type any→any may be exposed to Lua. Recall
that only functions with this type can be boxed and passed as a parameter to
a Lua function or stored inside a Lua table.

However, this design choice of always adding an any→any wrapper
was also made with performance in mind. One problem that can happen
in gradually-typed languages is that type casts between function types can
introduce layers of wrappers which are a big source of performance overhead,

Chapter 5. A Pair of Semantics for Pallene 74

b(e : τ1 → τ ′1) as τ2 → τ ′2cearly = (bτ2 → τ ′2c ⇐ bτ1 → τ ′1c) bec
= (any→any⇐ any→any) bec
= bec

Figure 5.12: In the early-checking translation, casts between function types
become a no-op. They are not a source of performance overhead.

b(λx:τ.e)(v)cearly = (bτ ′c ⇐ any)(bλx:τ.ec((any⇐ bτc)bvc))

= (bτ ′c ⇐ any)(λx′:any.
(any⇐ bτ ′c)((λx:bτc.bec)((bτc ⇐ any)x′))

)((any⇐ bτc)bvc)

(1)

= (bτ ′c ⇐ any)(any⇐ bτ ′c)
((λx:bτc.bec)((bτc ⇐ any)(any⇐ bτc)bvc))

(2)

= (λx:bτc.bec)(bvc) (3)

Figure 5.13: The wrapper lambdas in the early-checking translation can be
optimized away if the callee is known at compile time.

as we discussed in Section 4.1. The early-checking translation for Pallene avoids
this problem because casts between function types are effectively a no-op, as
illustrated in Figure 5.12. For example, if a λ-Pallene function is successively
cast using the as operator from int→int to any→any then further cast to
another function type, no matter how many layers of type casting there are,
the end result is always the same: a single typed lambda wrapped inside a
lambda of type any→any.

Nevertheless, sometimes we can avoid the wrappers altogether. One very
important special case is when the called function is known at compile time. As
we show in Figure 5.13, if we are calling a known function then we can optimize
away the any→any wrapper, as well as the need to box and unbox the function
arguments and return values. The steps involved in the optimization are:
(1) Convert the λ-Pallene term to PIR, using the early-checking translation.
(2) Apply a β-reduction transformation to get rid of the x′ lambda. (3)
Optimize away the two pairs of casts of the form (bτc ⇐ any)(any ⇐ bτc).
If τ is any then both casts expand to a no-op. Otherwise, they expand to
unboxbτc(boxbτc e), in which case we can use reduction rule r-unbox to cancel
out the box and the unbox.

Chapter 5. A Pair of Semantics for Pallene 75

bncerase = n
be1 + e2cerase = be1c + be2c
b{ e }cerase = { bec }
be1[e2]cerase = be1c[be2c]
bxcerase = x
be1(e2)cerase = be1c(be2c)
bλx:τ.ecerase = λx.bec

be as τcerase = bec

bboxG ecerase = bec
bunboxG ecerase = bec

Figure 5.14: The type-erasure transformation removes all the type annotations
and type casts from a λ-Pallene or PIR term, producing a λ-Dyn term.

The Pallene compiler implements this optimization. When a Pallene
function calls another Pallene function which is known at compile time, we
use a more efficient Pallene calling convention, which in PIR is represented by
the inner typed lambda. Higher order functions and cross-module function calls
still use the slower calling convention of passing the arguments as boxed objects
via the Lua stack, which in PIR is represented by the any→any wrapper.
However, this is not that bad because higher order functions are not as common
in Lua and Pallene as they would be in a functional language. Furthermore, as
we showed in Section 4.4, even the slower calling convention is already faster
than Lua.

5.6
Gradual Guarantee

Back in Chapter 3 we said that one of the guiding principles of Pallene’s
design was the Gradual Guarantee of Siek et al. (Siek et al. 2015). It states
that Pallene programs should evaluate to the same result as an equivalent
Lua program obtained by erasing all the type annotations, except in cases
where Pallene raises a run-time type error and Lua does not. In this section
we formally enunciate and prove this in the context of λ-Pallene.

The first step is to clarify what we mean by erasing types. In Figure 5.14
we introduce a type-erasing function called b cerase, which converts λ-Pallene
terms to λ-Dyn by removing all the type annotations and type casts. We
also define how to erase types from PIR terms, which will be useful because
evaluation happens at the PIR level. Either way, erasing the PIR terms
produced by the late-checking and early-checking translations has basically
the same result as erasing the original λ-Pallene term:

Chapter 5. A Pair of Semantics for Pallene 76

– If we erase the types after applying the late-checking transformation then
the result is exactly the same as if we erased the types from the original
λ-Pallene program.

– If we erase the types after applying the early-checking transformation
then the only difference is that it might introduce some wrapper lambdas
of the form (λx′.(λx.e)x′). It is safe to optimize these to just (λx.e) and
if we do so then the final result is identical to what we get by erasing the
types of the original λ-Pallene term.

We also define type-erasure for PIR evaluation contexts. The notation bCc
denotes the λ-Dyn evaluation context that is obtained by removing all the box
and unbox operations from the PIR evaluation context C. One useful lemma
is the following: erasing the result of filling in the hole of a PIR context C is
equivalent to filling in the hole of the erased context bCc. Another lemma is
how type erasure interacts with variable substitution.

Lemma 5.8.
For all PIR evaluation contexts C and terms e, bC

[
e
]
cerase = bCc

[
becerase

]
Proof. Follows from a simple induction on the structure of the PIR evaluation
context.

Lemma 5.9.
For all PIR terms e and values v, be[x← v]cerase = bec[x← bvc]

Proof. Follows from a straightforward induction on structure of the term e.

Now lets return to the matter of the gradual guarantee, starting with
a concrete example. We will compare the result of evaluating the following
λ-Pallene program either by converting it to PIR or by converting it to λ-Dyn
via type erasure.

((λx:int. x) as any→any)(nil as any)

This program takes a typed identity function, casts it to type any→ any and
then calls it passing the wrong type of argument. The example uses nil but
any non-int ground type would also suffice. The first case we analyze is type
erasure:

b ((λx:int. x) as any→any)(nil as any) cerase

= (λx. x)(nil)

−→dyn nil

Chapter 5. A Pair of Semantics for Pallene 77

Next, we try converting the program to PIR using the late-checking conversion.
It works similarly to the λ-Dyn version, except for the explicit boxing and
unboxing.

b ((λx:int. x) as any→any)(nil as any) clate

= (unboxany→any (boxany→any(λx:any. x)))(boxnil nil)

−→pir (λx:any. x)(boxnil nil)

−→pir boxnil nil

Finally, we look at what happens when using the early-checking conver-
sion. This time the evaluation ends with a run-time error because of the
unboxint (boxnil nil).

b ((λx:int. x) as any→any)(nil as any) cearly

= (λx′:any. boxint ((λx:int.x)(unboxint x
′)))(boxnil nil)

−→pir boxint ((λx:int.x)(unboxint (boxnil nil)))

−→pir panic

The first thing that we can see is that PIR may encounter some run-
time errors that are not encountered if we erase the types. The early-checking
version raised an exception (panic) while the type-erasure version did not.
This is because the early-checking semantics checks the type of the function
argument. The late-checking semantics and the type-erasure only check the
types of values when they are used; they do not check the types in the identity
function because it only passes the value around.

The second thing this example shows us is that the compilation via the
late-checking semantics and via type-erasure produced the same final value,
except for the additional boxing. This is not a coincidence. We will prove that
if compilation to PIR evaluates without errors to PIR term, then compilation
to λ-Dyn will also produce the same result, up to type-erasure.

The core of the proof involves showing that one reduction step in PIR
can be simulated by zero or more reduction steps in λ-Dyn, as illustrated by
the following diagram:

e e′

bec be′c

−→pir

−→∗dyn

erase erase

Chapter 5. A Pair of Semantics for Pallene 78

It is important to note that the starting point is PIR, because that is where
evaluation happens. An astute reader might wonder why not use λ-Pallene,
since the informal statement of the gradual guarantee talked about erasing
λ-Pallene terms, not PIR terms. The answer is that, as we discussed before,
erasing the types of a λ-Pallene program has basically the same effect as erasing
the types after conversion to PIR. Therefore, using PIR as the starting point
works just as well. Moving on, we return to the proof:

Lemma 5.10. (Γ `pir e : τ) ∧ (e −→pir e
′) implies becerase −→∗dyn be′cerase.

Proof. By case analysis on the hypothesis (e −→pir e
′).

– In the r-add case our hypothesis is C
[
na + nb

]
−→pir C

[
nc

]
and we

want to show that bC
[
na + nb

]
cerase −→∗dyn bC

[
nc

]
cerase.

bC
[
na + nb

]
cerase

= bCc
[
bna + nbc

]
by Lemma 5.8

= bCc
[
na + nb

]
by definition of b cerase

−→dyn bCc
[
nc

]
using r-add

= bCc
[
bncc

]
by definition of b cerase

= bC
[
nc

]
cerase by Lemma 5.8

– The r-index case is similar to the one for addition. The third step, where
we apply r-index on the λ-Dyn side, uses the fact that the index n is
inside the bounds of the array. We know this because of the hypothesis
that the PIR term took a step using the r-index rule.

bC
[
{v}[n]

]
cerase

= bCc
[
b{v}[n]c

]
by Lemma 5.8

= bCc
[
{bvc}[n]

]
by definition of b cerase

−→dyn bCc
[
bvnc

]
using r-index

= bC
[
vn

]
cerase by Lemma 5.8

Chapter 5. A Pair of Semantics for Pallene 79

– The r-missingkey case uses the same logic as the one for r-index, but
this time the hypothesis tells us that the index n is out of bounds.

bC
[
{v}[n]

]
cerase

= bCc
[
b{v}[n]c

]
by Lemma 5.8

= bCc
[
{bvc}[n]

]
by definition of b cerase

−→dyn bCc
[
nil

]
using r-missingkey

= bCc
[
bboxnil nilc

]
by definition of b cerase

= bC
[
boxnil nil

]
cerase by Lemma 5.8

– In the r-app case the key step uses Lemma 5.9 about substitution.

bC
[
(λx:τ.e)(v)

]
cerase

= bCc
[
b(λx:τ.e)(v)c

]
by Lemma 5.8

= bCc
[
(λx.bec)(bvc)

]
by definition of b cerase

−→dyn bCc
[
bec[x← bvc]

]
using r-app

= bCc
[
be[x← v]c

]
by Lemma 5.9

= bC
[
e[x← v]

]
cerase by Lemma 5.8

– In the r-unbox case the λ-Dyn part does not need any reduction steps.

bC
[
unboxG (boxG v)

]
cerase

= bCc
[
bunboxG (boxG v)c

]
by Lemma 5.8

= bCc
[
bvc

]
by definition of b cerase

= bC
[
v

]
cerase by Lemma 5.8

– The last case is r-error, which is a case that can never happen. The
hypothesis (e −→pir e

′) states that the result is a PIR expression but
panic is not a PIR expression.

Finally, we complete the proof of the gradual guarantee theorem by extending
it to any number of PIR evaluation steps.

Theorem 5.11 (Gradual guarantee for PIR).
(Γ `pir e : τ) ∧ (e −→∗pir e

′) implies becerase −→∗dyn be′cerase.

Chapter 5. A Pair of Semantics for Pallene 80

Proof. By induction on the number of steps of −→∗pir. The base case is trivial:
if the PIR evaluation took zero steps then e is equal to e′ and therefore bec
evaluates to be′c in zero steps. The inductive case follows from Lemma 5.10
and the transitivity of −→∗dyn.

One interesting corollary of Theorem 5.11 is that if a λ-Dyn term
gets stuck during the evaluation then any corresponding λ-Pallene term will
panic at run time (assuming it is well-typed in the first place). From the
contrapositive of the gradual guarantee theorem, if the erased term does not
evaluate to a value then the PIR term also does not evaluate to a value. As the
soundness theorem from PIR says that well-typed PIR terms can’t get stuck,
we can conclude that the only possibility is that the PIR term evaluates to
panic.

5.7
Mutable PIR

In the interest of keeping the presentation and the proofs clear, we have so
far formalized a purely-functional fragment of Pallene. This begs the question:
have we simplified too much? Do these results still apply if we add more
language features to the model? In this section, we address some of these
issues by sketching a way to add Lua-like mutable tables to Pallene IR.

One of the defining features of Lua is its versatile table datatype. As we
mentioned before, Lua tables are associative arrays that map keys to values.
Any Lua value can be used as a key or as a value. Many Lua data structures
are implemented using tables; for example, arrays are just tables that happen
to have sequential integer keys and records are just tables with string keys. In
this section we will show how PIR would look like with more general tables
instead of just arrays.

In addition to allowing other kinds of table keys, we will make the tables
mutable, because Lua is an imperative language1. This is something that needs
to be done carefully because it can cause problems if it is not done correctly.
In particular, there must be an answer to the problem of dynamically typed
code mutating typed objects in a way that disrespects the types.

One way that some gradually typed languages attack this problem is
using “guarded objects”. The idea is that when a typed object is passed to
untyped code, the runtime wraps it inside a proxy object which checks the types
of all the writes that happen through the proxy. One example of this approach
is the Chaperone and Impersonator system of Racket (Strickland et al. 2012).

1In this section we will focus on tables and ignore the matter of mutable variables. That
said, the latter could be modeled using a standard assignment-conversion step (Kranz 1986).

Chapter 5. A Pair of Semantics for Pallene 81

A downside of the guarded object approach is that it can have a high
cost both in terms of time and space performance (Takikawa et al. 2016).
Furthermore, the wrappers do not interact well with object identity, which
is something that is important in many languages, including Lua. In order to
preserve object identity in the presence of wrappers the interpreter and the
runtime must be modified to bypass the wrappers in all the operations that
care about object identity.

In the case of Pallene, the performance problems of proxy objects,
together with the desire to not modify the core Lua runtime, encouraged us
to look for a different approach. The one we ended up using is similar to the
Transient Checking strategy of Reticulated Python (Vitousek et al. 2014) or
the “Execution Strategy” of GradualTalk (Allende et al. 2013). The basic idea
is that whenever Pallene reads from a Lua table, it must check if the type of
the value is the one it expects, before using the value. This places the burden of
run-time type checking on the typed Pallene code, as opposed to the guarded
object strategy, where the highest cost is paid when dynamic code attempts to
access typed objects. However, as we showed in Section 3.5, if the compiler is
designed to take advantage of the type system then these run-time type checks
can be quite cheap and more than compensated by the speed boost from the
types.

Let’s now discuss how exactly we can add support for Lua-like tables to
PIR. We will present an extension of PIR called Mutable PIR and discuss how
the previous proofs may be adapted to it.

Syntax The main syntactic differences between purely-functional PIR and
mutable PIR are shown in Figure 5.15. Instead of arrays, we now have
tables. They are also constructed using curly braces but the table constructor
only allows the construction of empty tables. To insert more elements or to
mutate existing elements, there is now an assignment operation. The expression
v1[v2] = v3 assigns v3 to the key v2 of table v1.

We also introduced expressions for table addresses, written α. They
represent the location of the table object in the Lua heap. Expressions that
have a table type evaluate to one of these addresses. This is a classic technique
for modeling mutable references in a lambda calculus, which will be clearer
when we talk about the reduction rules for Mutable PIR. Nevertheless, it
is worth noting that these table addresses are never directly created by the
programmer. They only appear during the evaluation of the Mutable PIR
programs.

Chapter 5. A Pair of Semantics for Pallene 82

e := Expressions
| { } empty table constructor
| e1[e2] table read
| e1[e2] = e3 table write
| α table address*
| . . . (rest is the same as PIR)

τ := Types
| any dynamic type
| int integer type
| nil nil type
| string string type
| table table type
| τ → τ function type

Figure 5.15: New syntax in Mutable PIR. The table addresses are used
during the evaluation of Mutable PIR terms but never directly created by
the translation from λ-Pallene.

(t-cons)
Γ ` {} : table

(t-addr)
Γ ` α : table

(t-index)
Γ ` e1 : table Γ ` e2 : any

Γ ` e1[e2] : any

(t-write)
Γ ` e1 : table Γ ` e2, e3 : any

Γ ` e1[e2]=e3 : nil

Figure 5.16: New type rules in Mutable PIR

Types To support Lua-like tables we have to make changes to the type
system, as indicated by Figure 5.16. Firstly, the array type {any} is renamed
to table. The main difference is that the keys can now be any boxed Lua
value. In the rules t-index and t-write, the e2 term has type any instead of
integer.

Another thing that we can add to λ-Pallene and Mutable PIR to make
things more interesting is a string type, which paves the way for adding a
record type to λ-Pallene. Recall from Chapter 3 that Pallene arrays and records
are both implemented as Lua tables. This is reflected in mutable PIR: both
are encoded using type table and thus have the same type tag at run time.
Therefore, if Lua passes an array to a Pallene function that expects a record, it
will initially succeed because the type tag is also table. It will only fail when
Pallene tries to read one of the table keys and obtains nil instead of whatever
it was expecting.

Chapter 5. A Pair of Semantics for Pallene 83

Mutable-PIR evaluation

v := Values
| n integer value
| λx:τ. e lambda value
| boxG v boxed value
| α table address

r := Results
| e successful step
| panic run-time error

µ : α→ (any→ any) Lua Heap

Reduction relation µ|e −→pir µ|r

(r-cons) µ | C
[
{}

]
−→ µ[α 7→ ∅] | C

[
α

]
, where α is fresh

(r-index) µ | C
[
α[v]

]
−→ µ | C

[
µ[α][v]

]
, v ∈ keys(µ[α])

(r-indexnil) µ | C
[
α[v]

]
−→ µ | C

[
boxnil nil

]
, v /∈ keys(µ[α])

(r-write) µ | C
[
α[v]=v′

]
−→ µ[α][v 7→ v′] | C

[
nil

]
v 6= boxnil nil

(r-writenil) µ | C
[
α[v]=v′

]
−→ µ | panic v = boxnil nil

Figure 5.17: New reduction rules in Mutable PIR

Reduction Next, we define the reduction rules for Mutable PIR. They are
shown in Figure 5.17. The reduction relation takes an additional parameter µ,
representing the Lua heap. This heap maps table addresses α to their contents,
which themselves are a map from keys to values.

Rule r-cons shows how new tables are created. When we evaluate a table
constructor expression {}, the result is a fresh table address α. The notation
µ[α 7→ ∅] means that we extend the Lua heap with a mapping from α to an
empty set, representing the newly created empty table.

The r-write operation is the other operation that modifies the state.
If the key is not present in the table then it adds a new key-value pair to it.
Otherwise, it overwrites an existing key-value pair. Using nil as a key is not
allowed and attempting to do so will raise a run-time exception, just like in
Lua.

In the other direction, we have the rules r-index and r-indexnil, which
read from the heap state. If the key v is present in the table contents µ[α],
then evaluation proceeds with rule r-index, producing value µ[α][v]. If the key

Chapter 5. A Pair of Semantics for Pallene 84

does not exist in the table then the evaluation produces a boxed nil instead.

Translations Finally, we have to update the early-checking and late-checking
translations to account for arrays being replaced by tables. The main difference
is that the array keys are now boxed. For the late-checking translation this
means that we can now use the key without unboxing it:

be1[e2]clate = (unboxtable be1c)[be2c]

For the early-checking translation we have to box the array key:

be1[e2] : τcearly = (bτc ⇐ any)(be1c[boxintbe2c])

Proofs The proofs of soundness for PIR and for the gradual guarantee can
be adapted to Mutable PIR without too much trouble. The crucial detail that
makes this possible is that arrays in PIR are fundamentally dynamic and we
do not maintain any invariants involving the array contents. The arrays always
contain boxed values of type any, which can be anything boxable. This matches
the memory model of the Lua heap in Mutable PIR, where the contents of the
tables are also boxed values of type any. The only invariant that we have to
maintain is that µ[α] is always well defined; all addresses α that appear in the
program also appear on the Lua heap. We now sketch how each of the proofs
in this chapter could be extended to Mutable PIR.

In Lemma 5.1, the Canonical Forms Lemma, we have to replace the case
for arrays with a case that says that if a value has type table then it takes
the form of a table address α.

In Lemma 5.2, the Progress Lemma for PIR, the tricky thing we need to
show is that the α that we get when evaluating a table must be part of the
heap µ, so that µ[α] is well defined in the reduction rules. This follows from the
fact that table addresses are only created by the r-cons rule, which also adds
them to the heap at the same time. Note that in our model, table addresses
are never removed from the heap.

Next, we have Lemma 5.3, the Preservation Lemma for PIR. The proof
for the t-index still works with Mutable PIR because the contents of the
tables are also boxed values of type any. We also need to add a case for the
array-write operations but the logic is similar to the array-read case.

The Soundness Theorems for early-checking and late-checking Pallene
(Theorems 5.4–5.7) are essentially unchanged. The only important difference
is that all the references to {any} are replaced by table.

Chapter 5. A Pair of Semantics for Pallene 85

Finally, for the proof of the gradual guarantee (Lemma 5.10) we would
have to update the definitions of λ-Dyn and b cerase to include mutable tables.
The important thing is that the Lua heap is essentially the same in Mutable
PIR and λ-Dyn. The only difference is that in Mutable PIR the boxing around
all the values is explicit while in λ-Dyn it would be implicit. But at the end
of the day, the two heaps map the same keys to the same values. This codifies
the principle that Pallene shares the same runtime and garbage collector as
Lua and that tables can be passed between Pallene and Lua without needing
to be converted.

6
Conclusion

Dynamic languages are popular due to their simplicity and flexibility,
however that same flexibility also makes it hard to optimize their performance.
Programmers and language designers have approached this problem from
many directions, including scripting, just-in-time compilers, and optional type
systems. All these approaches have shortcomings. In the case of scripting, the
overhead of converting data as it crosses the boundary between the languages
can offset the advantage of using the system language. In the case of JIT
compilers, the complexity of their implementations can pose many challenges:
they are hard to implement, maintain, and port to new architectures. The
optimization that JIT compilers provide is also not uniform. There is a subset
of the language that can be compiled to machine code and which programmers
are implicitly encouraged to conform to. Finally, in the case of optional type
systems, it is not easy to design a type system that can balance correctness,
performance, and simplicity. Performance in particular has been a sticking
point.

In this thesis we described another approach to the problem of the
performance of dynamic languages. This approach combines positive aspects
from scripting, JIT compilation, and optional types, while avoiding some of
their shortcomings. Motivated by Lua, we also wanted an approach that could
be implemented in a way that was simple, maintainable, and easy to port to
different architectures.

Our proposal is to use ideas from gradual typing and just-in-time
compilers to produce a typed companion language for an existing dynamic
language. The typed language plays the role of a system language in the
scripting paradigm, but one designed from the start to be used in conjunction
with the dynamic language. Our example of this is Pallene, a typed language
designed to be scripted from Lua.

Pallene is a typed subset of Lua which uses run-time tag checks to
enforce type safety when interacting with untyped Lua code. This tag-checking
strategy is getting good performance because the tag checks are relatively
cheap and more than compensated by the speedup from the types. Pallene’s
runtime is also tightly integrated with Lua’s. The garbage collector is shared

Chapter 6. Conclusion 87

with Lua and objects can be exchanged between Lua and Pallene with
negligible overhead.

In a set of benchmarks from the Computer Language Benchmarks Game
(CLBG), Pallene achieved speedups between 1.5× and 15× when compared to
the reference Lua interpreter, with a geometric mean speedup of 7.2× . These
results were comparable with the speedups achieved by LuaJIT, a JIT compiler
for Lua. In the same benchmarks, LuaJIT achieved speedups between 5× and
20×, with a mean of 8.5×. These good results for Pallene happen despite its
relatively simple implementation and the fact that we are still working on
adding many compiler optimizations. Pallene’s compiler is written in Lua and
C, adding up to 8000 lines of code. This is less than the 28000 lines of C code
in the reference Lua interpreter and is much less than the 135000 lines of C
and assembly language in LuaJIT.

Pallene exhibited good performance even when mixed with Lua. In the
subset of CLBG benchmarks that could be separated into multiple modules, we
evaluated the performance of combining Lua and Pallene modules in the same
program. For each program, we measured the performance of every possible
configuration of modules, with each module being implemented in either Lua
or Pallene. We observed that replacing Lua with Pallene usually improved the
overall performance of the program, and never worsened it. This compares
favorably with what has been reported for other gradually typed languages,
where the performance of configurations that mix typed and untyped modules
often are worse than the performance of fully untyped programs. Pallene
also avoided the problem we encountered in other benchmark experiments
we performed, where sometimes rewriting a Lua module in C would result in
an overall performance that was worse than keeping the code in Lua.

In this thesis we have also provided the basis for a formalization of
Pallene’s semantics. We introduced an intermediate representation for Pallene,
called PIR, which models when Pallene programs perform run-time tag checks
and when they convert data between tagged and untagged representations.
PIR provides a formal notation for exploring potential semantics for Pallene.
These different semantics correspond to different strategies for inserting run-
time tag checks when compiling Pallene to PIR. One of the most interesting
aspects of PIR is that tag checks also correspond to locations in the program
where a tagged value is converted to an untagged one, which has implications
for performance. Checking tags sooner may allow values to be stored in a more
efficient untagged representation. On the other hand, checking tags later may
allow some tag checks to be skipped if they only happen conditionally.

Finally, in this thesis we also present some ideas that are applicable

Chapter 6. Conclusion 88

to the problem of designing efficient gradually-typed languages. The first of
these ideas is something fairly obvious. If the typed language is compiled to
the dynamic language with added run-time checks, then performance is likely
to be as slow as the dynamic language or worse. However, if the compiler
takes advantage of the types to generate efficient type-specialized code, then
the performance can be much better. We show that when the run-time type
checking takes the form of tag checks it can be quite cheap. In Pallene the cost
of the run-time tag checks is usually less than 10% and sometimes even zero
due to the CPU’s instruction pipelining and branch prediction.

The second idea that Pallene highlights is the observation that the
optimizations in just-in-time compilers are analogous to the optimizations that
an ahead-of-time compiler for a gradually typed language may perform. In both
cases the optimizer uses type information to generate efficient machine code.
The difference is that JIT compilers obtain that type information by profiling
the program while it is executing, while in a gradually typed language the types
would be known from the type annotations. Since JIT compilation has been
found useful in many dynamic languages, this suggests that many dynamic
languages may contain an efficient typed language subset inside them.

The third idea from Pallene that can be applied in the context of gradual
typing is that perhaps the typed language should be designed to complement
the dynamic language and not to supersede it. The goal of designing a type
system for good performance may push the design in a different direction than
the goal of supporting a wide variety of idioms from the dynamic language.
This is exemplified by the many differences between Pallene and Typed Lua,
a gradually typed variant of Lua which was designed with the latter goal in
mind. Another reason why we intentionally designed Pallene to be a subset ot
Lua, instead of a superset, is that we observed that some parts of Lua do not
benefit as much from compilation to machine code. Pallene leaves out many of
the more “dynamic” features of Lua which are hard to generate fast code for.
We focus the design of Pallene and our implementation effort on the parts of
Lua where ahead-of-time compilation is most advantageous.

Bibliography

[Adams et al. 2014] ADAMS, K.; EVANS, J.; MAHER, B.; OTTONI, G.;
PAROSKI, A.; SIMMERS, B.; SMITH, E. ; YAMAUCHI, O.. The Hiphop
virtual machine. In: PROCEEDINGS OF THE 2014 ACM INTERNA-
TIONAL CONFERENCE ON OBJECT ORIENTED PROGRAMMING SYS-
TEMS LANGUAGES & APPLICATIONS, OOPSLA ’14, p. 777–790, 2014.

[Allende et al. 2013] ALLENDE, E.; FABRY, J. ; TANTER, E.. Cast insertion
strategies for gradually-typed objects. In: PROCEEDINGS OF THE
9TH SYMPOSIUM ON DYNAMIC LANGUAGES, DLS ’13, p. 27–36, 2013.

[Ancona 2007] ANCONA, D.; ANCONA, M.; CUNI, A. ; MATSAKIS, N. D..
RPython: A step towards reconciling dynamically and statically
typed OO languages. In: PROCEEDINGS OF THE 2007 SYMPOSIUM
ON DYNAMIC LANGUAGES, DLS, 2007.

[Antonov et al. 2007] ANTONOV, P.; OTHERS. V8 optimization killers,
2013. Retrieved in 2017-01-08. https://github.com/petkaantonov/
bluebird/wiki/Optimization-killers.

[Barret et al. 2017] BARRETT, E.; BOLZ-TEREICK, C. F.; KILLICK, R.;
MOUNT, S. ; TRATT, L.. Virtual machine warmup blows hot
and cold. In: PROCEEDINGS OF THE 32ND ANNUAL CONFERENCE
ON OBJECT-ORIENTED PROGRAMMING SYSTEMS, LANGUAGES, AND
APPLICATIONS, OOPSLA, 2017.

[Bauman et al. 2015] BAUMAN, S.; BOLZ, C. F.; HIRSCHFELD, R.; KIR-
ILICHEV, V.; PAPE, T.; SIEK, J. G. ; TOBIN-HOCHSTADT, S.. Pycket:
A tracing JIT for a functional language. In: PROCEEDINGS OF THE
20TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL
PROGRAMMING, ICFP, 2015.

[Behnel et al. 2010] BEHNEL, S.; BRADSHAW, R.; CITRO, C.; DALCIN, L.;
SELJEBOTN, D. ; SMITH, K.. Cython: The best of both worlds.
Computing in Science Engineering, 2011.

https://github.com/petkaantonov/bluebird/wiki/Optimization-killers
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers

Bibliography 90

[Bierman et al. 2014] BIERMAN, G.; ABADI, M. ; TORGERSEN, M.. Un-
derstanding TypeScript. In: 28TH EUROPEAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING, ECOOP, 2014.

[Biggar 2010] BIGGAR, P.. Design and implementation of an ahead-
of-time compiler for PHP. PhD thesis, Trinity College Dublin, 2010.
htps://paulbiggar.com/research/#phd-dissertation.

[Bolz et al. 2009] BOLZ, C. F.; CUNI, A.; FIJALKOWSKI, M. ; RIGO, A.. Trac-
ing the meta-level: PyPy’s tracing JIT compiler. In: PROCEED-
INGS OF THE 4TH WORKSHOP ON THE IMPLEMENTATION, COM-
PILATION, OPTIMIZATION OF OBJECT-ORIENTED LANGUAGES AND
PROGRAMMING SYSTEMS, ICOOOLPS, 2009.

[Bracha 2004] BRACHA, G.. Pluggable type systems. OOPSLA Work-
shop on Revival of Dynamic Languages, 2004. http://bracha.org/
pluggableTypesPosition.pdf.

[Bracha et al. 1998] BRACHA, G.; ODERSKY, M.; STOUTAMIRE, D. ;
WADLER, P.. Making the future safe for the past: Adding gener-
icity to the java programming language. In: PROCEEDINGS OF
THE 13TH ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED PRO-
GRAMMING, SYSTEMS, LANGUAGES, AND APPLICATIONS, OOPSLA
’98, p. 183–200, 1998.

[Campora et al.] CAMPORA, J. P.; CHEN, S. ; WALKINGSHAW, E.. Casts and
costs: Harmonizing safety and performance in gradual typing.
Proceedings of the ACM on Programming Languages, 2018.

[DeVito 2014] DEVITO, Z.. Terra: Simplifying High-Performance Pro-
gramming Using Multi-Stage Programming. PhD thesis, Stanford
University, 2014.

[Deutsch & Schiffman 1984] DEUTSCH, L. P.; SCHIFFMAN, A. M.. Efficient
implementation of the Smalltalk-80 system. In: PROCEEDINGS OF
THE 11TH ACM SIGACT-SIGPLAN SYMPOSIUM ON PRINCIPLES OF
PROGRAMMING LANGUAGES, POPL, 1984.

[Futamura 1999] FUTAMURA, Y.. Partial evaluation of computation
process, revisited. Higher Order Symbolic Computation, 1999.

[Gal et al. 2006] GAL, A.; PROBST, C. W. ; FRANZ, M.. HotpathVM: An
effective JIT compiler for resource-constrained devices. In: PRO-

htps://paulbiggar.com/research/#phd-dissertation
http://bracha.org/pluggableTypesPosition.pdf
http://bracha.org/pluggableTypesPosition.pdf

Bibliography 91

CEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON VIRTUAL
EXECUTION ENVIRONMENTS, VEE, 2006.

[Giraldez 2016] GUERRA GIRALDEZ, J.. LOOM - a LuaJIT performance
visualizer, 2016. https://github.com/cloudflare/loom.

[Giraldez 2017] GUERRA GIRALDEZ, J.. LuaJIT hacking: Getting next()
out of the NYI list. CloudFare Blog, 2017. https://blog.cloudflare.
com/luajit-hacking-getting-next-out-of-the-nyi-list/.

[Graham 1995] GRAHAM, P.. ANSI Common LISP. Apt, Alan R., 1996.

[Greenman & Felleisen, 2018] GREENMAN, B.; FELLEISEN, M.. A spectrum
of type soundness and performance. Proc. ACM Program. Lang.,
2018.

[Gualandi & Ierusalimschy 2018] GUALANDI, H. M.; IERUSALIMSCHY, R.. Pal-
lene: a statically typed companion language for lua. In: PRO-
CEEDINGS OF THE XXII BRAZILIAN SYMPOSIUM ON PROGRAMMING
LANGUAGES, SBLP, 2018.

[Gualandi & Ierusalimschy 2020] GUALANDI, H.; IERUSALIMSCHY, R.. Pal-
lene: A companion language for lua. Science of Computer Program-
ming, 2020.

[Gualandi 2015] GUALANDI, H. M.. Typing dynamic languages – a re-
view. Master’s thesis, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), 2015.

[Guoy 2013] GOUY, I.. The computer language benchmarks game, 2013.
https://benchmarksgame-team.pages.debian.net/benchmarksgame.

[Ierusalimschy et al. 2005] IERUSALIMSCHY, R.; DE FIGUEIREDO, L. H. ; CE-
LES, W.. The implementation of Lua 5.0. Journal Universal Computer
Science, 2005.

[Ierusalimschy et al. 2007] IERUSALIMSCHY, R.; DE FIGUEIREDO, L. H. ; CE-
LES, W.. The evolution of Lua. In: PROCEEDINGS OF THE THIRD
ACM SIGPLAN CONFERENCE ON HISTORY OF PROGRAMMING LAN-
GUAGES, HOPL, 2007.

[Ierusalimschy et al. 2011] IERUSALIMSCHY, R.; DE FIGUEIREDO, L. H. ; CE-
LES, W.. Passing a language through the eye of a needle. Commu-
nications of the ACM, 2011.

https://github.com/cloudflare/loom
https://blog.cloudflare.com/luajit-hacking-getting-next-out-of-the-nyi-list/
https://blog.cloudflare.com/luajit-hacking-getting-next-out-of-the-nyi-list/
https://benchmarksgame-team.pages.debian.net/benchmarksgame

Bibliography 92

[Ierusalimschy et al. 2018] IERUSALIMSCHY, R.; DE FIGUEIREDO, L. H. ; CE-
LES, W.. A look at the design of Lua. Communications of the ACM,
61(11):114–123, Oct. 2018.

[Ierusalimschy et al. 2020] IERUSALIMSCHY, R.; FIGUEIREDO, L. H. D. ; CE-
LES, W.. Lua 5.4 reference manual. http://www.lua.org/manual/5.4/,
2020.

[Igarashi 2001] IGARASHI, A.; PIERCE, B. C. ; WADLER, P.. Featherweight
java: A minimal core calculus for java and gj. ACM Transactions on
Programming Languages and Systems, 23(3):396–450, May 2001.

[Kranz 1986] KRANZ, D.; ADAMS, N.; KELSEY, R.; REES, J.; HUDAK, P.
; PHILBIN, J.. Orbit: An optimizing compiler for scheme. In:
PROCEEDINGS OF THE 1986 SIGPLAN SYMPOSIUM ON COMPILER
CONSTRUCTION, SIGPLAN ’86, p. 219–233. Association for Computing
Machinery, 1986.

[Kuhlenschmidt et al. 2019] KUHLENSCHMIDT, A.; ALMAHALLAWI, D. ; SIEK,
J. G.. Toward efficient gradual typing for structural types via co-
ercions. In: PROCEEDINGS OF THE 40TH ACM SIGPLAN CONFER-
ENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTA-
TION, PLDI, 2019.

[Lattner 2002] LATTNER, C.. Llvm: An infrastructure for multi-
stage optimization. Master’s thesis, Computer Science Dept., Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
https://www.llvm.org/pubs/.

[Ligneul 2016] LIGNEUL, G.. Um compilador de lua vm para llvm.
Technical report, Pontificia Universidade Católica do Rio de Janeiro, 2016.

[Maidl et al. 2015] MAIDL, A. M.; MASCARENHAS, F. ; IERUSALIMSCHY, R..
A formalization of Typed Lua. In: PROCEEDINGS OF THE 11TH
SYMPOSIUM ON DYNAMIC LANGUAGES, DLS, 2015.

[Manura 2008] MANURA, D.. The lua2c compiler. Source code repository for
the lua2c compiler., 2008. https://github.com/davidm/lua2c/.

[Mogilefsky 1999] MOGILEFSKY, B.. Lua in Grim Fandango. Grim Fan-
dango Network, May 1999. https://www.grimfandango.net/features/
articles/lua-in-grim-fandango.

https://github.com/davidm/lua2c/
https://www.grimfandango.net/features/articles/lua-in-grim-fandango
https://www.grimfandango.net/features/articles/lua-in-grim-fandango

Bibliography 93

[Moura & Ierusalimschy, 2009] DE MOURA, A. L.; IERUSALIMSCHY, R.. Re-
visiting coroutines. ACM Transactions on Programming Languages and
Systems, 31(2):6:1–6:31, Feb. 2009.

[Muehlboeck & Tate 2017] MUEHLBOECK, F.; TATE, R.. Sound gradual
typing is nominally alive and well. Proceedings of the ACM on
Programming Languages, 2017.

[Ousterhout 1998] OUSTERHOUT, J. K.. Scripting: Higher-level program-
ming for the 21st century. Computer, 1998.

[Pall 2004] PALL, M.. Coco — true C coroutines for Lua, 2004. https:
//coco.luajit.org.

[Pall 2005] PALL, M.. LuaJIT, a just-in-time compiler for Lua, 2005.
http://luajit.org/luajit.html.

[Pall 2009] PALL, M.. LuaJIT 2.0 intellectual property disclosure and
research opportunities, 2009. http://lua-users.org/lists/lua-l/
2009-11/msg00089.html.

[Pall 2012] PALL, M.. LuaJIT performance tips, 2012. http://wiki.
luajit.org/Numerical-Computing-Performance-Guide.

[Pall 2014] PALL, M.; OTHERS. Not Yet Implemented operations in
LuaJIT, 2014. http://wiki.luajit.org/NYI.

[Pierce 2002] PIERCE, B. C.. Types and Programming Languages. MIT
Press, 2002.

[PyPy 2011] THE PYPY PROJECT. Call for donations - pypy to support
python3! https://pypy.org/py3donate.html, 2011.

[PyPy 2016] THE PYPY PROJECT. RPython official documentation,
2016. https://rpython.readthedocs.io/.

[Richards et al. 2017] RICHARDS, G.; ARTECA, E. ; TURCOTTE, A.. The
VM already knew that: Leveraging compile-time knowledge to
optimize gradual typing. Proceedings of the ACM on Programming
Languages, 2017.

[Siek & Taha 2006] SIEK, J. G.; TAHA, W.. Gradual typing for functional
languages. Scheme and Functional Programming Workshop, 2006.

https://coco.luajit.org
https://coco.luajit.org
http://luajit.org/luajit.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/NYI
https://pypy.org/py3donate.html
https://rpython.readthedocs.io/

Bibliography 94

[Siek et al. 2015] SIEK, J. G.; VITOUSEK, M. M.; CIMINI, M. ; BOYLAND, J. T..
Refined criteria for gradual typing. In: 1ST SUMMIT ON ADVANCES
IN PROGRAMMING LANGUAGES, SNAPL, 2015.

[Southern & Renau 2016] SOUTHERN, G.; RENAU, J.. Overhead of deopti-
mization checks in the V8 javascript engine. In: 2016 INTERNA-
TIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION, IISWC,
2016.

[Strickland et al. 2012] STRICKLAND, T. S.; TOBIN-HOCHSTADT, S.; FIND-
LER, R. B. ; FLATT, M.. Chaperones and impersonators: Run-time
support for reasonable interposition. In: PROCEEDINGS OF THE
ACM INTERNATIONAL CONFERENCE ON OBJECT ORIENTED PRO-
GRAMMING SYSTEMS LANGUAGES AND APPLICATIONS, OOPSLA ’12,
p. 943–962. ACM, 2012.

[Takikawa et al. 2016] TAKIKAWA, A.; FELTEY, D.; GREENMAN, B.; NEW,
M. S.; VITEK, J. ; FELLEISEN, M.. Is sound gradual typing dead?
In: PROCEEDINGS OF THE 43RD SYMPOSIUM ON PRINCIPLES OF
PROGRAMMING LANGUAGES, POPL, 2016.

[Tobin-Hochstadt & Felleisen] TOBIN-HOCHSTADT, S.; FELLEISEN, M.. In-
terlanguage migration: From scripts to programs. In: 21ST
SYMPOSIUM ON OBJECT-ORIENTED PROGRAMMING SYSTEMS, LAN-
GUAGES, AND APPLICATIONS, OOPSLA, 2006.

[Vitousek et al. 2014] VITOUSEK, M. M.; KENT, A. M.; SIEK, J. G. ; BAKER,
J.. Design and evaluation of gradual typing for Python. In:
PROCEEDINGS OF THE 10TH ACM SYMPOSIUM ON DYNAMIC LAN-
GUAGES, DLS, 2014.

[Vitousek et al. 2017] VITOUSEK, M. M.; SWORDS, C. ; SIEK, J. G.. Big types
in little runtime: Open-world soundness and collaborative blame
for gradual type systems. In: PROCEEDINGS OF THE 44TH ACM SIG-
PLAN SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES,
POPL, 2017.

[Vitousek et al. 2019] VITOUSEK, M. M.; SIEK, J. G. ; CHAUDHURI, A.. Opti-
mizing and evaluating transient gradual typing. In: PROCEEDINGS
OF THE 15TH ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON DY-
NAMIC LANGUAGES, DLS, 2019.

Bibliography 95

[Würthinger et al. 2013] WÜRTHINGER, T.; WIMMER, C.; WÖß, A.;
STADLER, L.; DUBOSCQ, G.; HUMER, C.; RICHARDS, G.; SIMON, D. ;
WOLCZKO, M.. One VM to rule them all. In: PROCEEDINGS OF
THE 2013 ACM INTERNATIONAL SYMPOSIUM ON NEW IDEAS, NEW
PARADIGMS, AND REFLECTIONS ON PROGRAMMING & SOFTWARE,
Onward, 2013.

[Zhang 2011] ZHANG, Y.. Openresty, scalable web platform by extend-
ing NGINX with Lua, 2011. https://openresty.org/en/.

https://openresty.org/en/

	The Pallene Programming Language
	Resumo
	Table of contents
	Introduction
	Optimizing Scripting Languages
	The Scripting Architecture
	Just-in-time Compilers
	Optional Type Systems
	Ahead-of-time Compilers
	Performance Evaluation of Lua-AOT

	The Pallene Language
	Syntax
	Type System
	Semantics
	Implementation
	Performance Validation of Pallene
	Related Work

	Pallene and the Performance of Gradually Typed Languages
	Performance Challenges for Gradually Typed Languages
	JIT Compilers for Dynamic Languages
	Adding Types
	Program Migration Performance Experiments for Pallene
	Focusing the Design of Pallene
	Summary

	A Pair of Semantics for Pallene
	Lambda-Dyn
	Lambda-Pallene
	Pallene Intermediate Representation (PIR)
	The Late-checking Translation
	The Early-checking Translation
	Gradual Guarantee
	Mutable PIR

	Conclusion
	Bibliography

